Pestivirus A or bovine viral diarrhoea virus (BVDV) type 1 is responsible for cosmopolitan diseases affecting cattle and other ruminants, presenting a wide range of clinical manifestations, with relevant impact on zootechnic production. The objective of the present study was to verify whether animals immunised with four commercial vaccines also developed a protective humoral immunity against other viral subgenotypes than those contained in each vaccine. Four groups of 25 bovines each were formed and vaccinated according to the manufacturer’s instructions of the commercial vaccines. On sera collected 28 days after the last vaccination, virus neutralisation tests (VNT) were performed using homologous and heterologous viruses and enzyme-linked immunosorbent assay (ELISA) methods. Finally, the VNT results were comparatively evaluated through a statistical analysis. Serological results highlighted that, although with a different degree of efficiency, the four vaccines resulted in not developing a solid antibody-mediated cross-immunity against all the strains used.
We have recently demonstrated that an attenuated strain of Salmonella enterica serovar Typhimurium unable to synthesize the zinc transporter ZnuABC (S. Typhimurium ΔznuABC), is able to protect mice against systemic and enteric salmonellosis and is safe in pigs. Here, we have tested the protective effects of S. Typhimurium ΔznuABC in pigs. Resistance to challenge with the fully virulent strain S. Typhimurium ATCC 14028 was assessed in animals vaccinated with S. Typhimurium ΔznuABC (two dosages tested), in controls vaccinated with a formalin-inactivated virulent strain and in unvaccinated controls. Clinical signs of salmonellosis, faecal shedding and bacterial colonization of organs were used to assess vaccine-induced protection. After the challenge, pigs vaccinated with the attenuated S. Typhimurium ΔznuABC strain did not display clinical signs of salmonellosis (fever or diarrhoea). The vaccine also reduced intestinal tract colonization and faecal shedding of the fully virulent Salmonella strain, as compared to control groups. S. Typhimurium ΔznuABC represents a promising candidate vaccine against salmonellosis in pigs.
Meat contamination by Salmonella spp is emerging as a major cause of human enteric infections in industrialized countries. The attempts to reduce human cases of salmonellosis encompass pre- and post harvest interventions. In this context, vaccination of pigs may represent an effective instrument in eliminating/reducing Salmonella burden through the food chain. We have previously demonstrated that Salmonella Typhimurium lacking the ZnuABC transporter (S. Typhimurium ΔznuABC) is a promising candidate live vaccine in different mouse models of Salmonella Typhimurium infection. In this study, we confirmed in pigs the attenuation of S. Typhimurium ΔznuABC. Moreover, we evaluated the safety and immunogenicity of S. Typhimurium ΔznuABC administered to pigs by the oral route. We monitored clinical conditions of animals and we conducted a microbiological culture and a quantification of the humoral and cellular immune response, respectively, on faecal and blood samples of pigs. After vaccination with attenuated S. Typhimurium ΔznuABC, pigs showed a modest degree of hyperthermia. In addition, faecal shedding of S. Typhimurium ΔznuABC could not be detected 28 days after the inoculum. Furthermore, vaccination with S. Typhimurium ΔznuABC elicited a distinct production of anti-Salmonella antibodies and IFN-γ. Taken together, these results suggest that S. Typhimurium ΔznuABC is attenuated and immunogenic in pigs. Although the vaccine dosages do not guarantee complete safety there is ample margin to set up better conditions of use, suggesting that S. Typhimurium ΔznuABC could be a promising attenuated strain to be used as live mucosal vaccine for oral delivery.
Wild birds play an important role in the circulation and spread of pathogens that are potentially zoonotic or of high economic impact on zootechnical production. They include, for example, West Nile virus (WNV), Usutu virus (USUV), avian influenza virus (AIV), and Newcastle disease virus (NDV), which, despite having mostly an asymptomatic course in wild birds, have a strong impact on public health and zootechnical production. This study investigated the presence of these viruses in several wild bird species from North Italy during the biennium 2019–2020. Wild birds derived from 76 different species belonging to 20 orders. Out of 679 birds, 27 were positive for WNV (lineage 2) with a prevalence of 4%; all birds were negative for USUV; one gull was positive for H13N6 influenza virus, and 12 samples were positive for NDV with a prevalence of 2%. Despite the low prevalence observed, the analyses performed on these species provide further data, allowing a better understanding of the diffusion and evolution of diseases of both economic and zoonotic importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.