Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasiparallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code arepo for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.
Supernova remnants (SNRs) are believed to be the source of Galactic cosmic rays (CRs). SNR shocks accelerate CR protons and electrons which reveal key insights into the non-thermal physics by means of their synchrotron and γ-ray emission. The remnant SN 1006 is an ideal particle acceleration laboratory because it is observed across all electromagnetic wavelengths from radio to γ-rays. We perform three-dimensional (3D) magnetohydrodynamics (MHD) simulations where we include CR protons and follow the CR electron spectrum. By matching the observed morphology and non-thermal spectrum of SN 1006 in radio, X-rays and γ-rays, we gain new insight into CR electron acceleration and magnetic field amplification. 1. We show that a mixed leptonic-hadronic model is responsible for the γ-ray radiation: while leptonic inverse-Compton emission and hadronic pion-decay emission contribute equally at GeV energies observed by Fermi, TeV energies observed by imaging air Cherenkov telescopes are hadronically dominated. 2. We show that quasi-parallel acceleration (i.e., when the shock propagates at a narrow angle to the upstream magnetic field) is preferred for CR electrons and that the electron acceleration efficiency of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed at least by a factor ten. This precludes extrapolation of current one-dimensional plasma particle-in-cell simulations of shock acceleration to realistic SNR conditions. 3. To match the radial emission profiles and the γ-ray spectrum, we require a volume-filling, turbulently amplified magnetic field and that the Bell-amplified magnetic field is damped in the immediate post-shock region. Our work connects micro-scale plasma physics simulations to the scale of SNRs.
Many stripped envelope supernovae (SNe) present a signature of high-velocity material responsible for broad absorption lines in the observed spectrum. These include SNe that are associated with long gamma-ray bursts (LGRBs) and low-luminosity GRBs (llGRBs), and SNe that are not associated with GRBs. Recently it was suggested that this high velocity material originates from a cocoon that is driven by a relativistic jet. In LGRBs this jet breaks out successfully from the stellar envelope, while in llGRBs and SNe that are not associated with GRBs the jet is choked. Here we use numerical simulations to explore the velocity distribution of an outflow that is driven by a choked jet and its dependence on the jet and progenitor properties. We find that in all cases where the jet is not choked too deep within the star, the outflow carries a roughly constant amount of energy per logarithmic scale of proper velocity over a wide range of velocities, which depends mostly on the cocoon volume at the time of its breakout. This is a universal property of jets driven outflows, which does not exist in outflows of spherically symmetric explosions or when the jets are choked very deep within the star. We therefore conclude that jets that are choked (not too deep) provide a natural explanation to the fast material seen in the early spectra of stripped envelope SNe that are not associated with LGRBs and that properties of this material could reveal information on the otherwise hidden jets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.