Previous chapters of this issue have focused on the formation and evolution of cosmic structures under the influence of gravity alone. In order to make a close link between theoretical models of structure formation and observational data, it is necessary to consider the gas-dynamical and radiative processes that drive the evolution of the baryonic components of dark matter halos. These processes cover many orders of magnitude in physical sizes and time-scales and are entangled in a complex network of actions, back-reactions, and self-regulations. In addition, our understanding of them is far from being complete, even when viewed in isolation. This chapter provides a brief review of the techniques that are commonly used to link the physical properties of galaxies with the dark matter halos in which they reside. I discuss the main features of these methods, as well as their aims, limits, and complementarities.