In this manuscript, we report an extensive study of the physico-chemical properties of different samples of O3-NaMnO2, synthesized by sol–gel and solid state methods. In order to successfully synthesize the materials by sol–gel methods a rigorous control of the synthesis condition has been optimized. The electrochemical performances of the materials as positive electrodes in aprotic sodium-ion batteries have been demonstrated. The effects of different synthesis methods on both structural and electrochemical features of O3-NaMnO2 have been studied to shed light on the interplay between structure and performance. Noticeably, we obtained a material capable of attaining a reversible capacity exceeding 180 mAhg−1 at 10 mAg−1 with a capacity retention >70% after 20 cycles. The capacity fading mechanism and the structural evolution of O3-NaMnO2 upon cycling have been extensively studied by performing post-mortem analysis using XRD and Raman spectroscopy. Apparently, the loss of reversible capacity upon cycling originates from irreversible structural degradations.
In this work, the use of N-methyl-N-propylpiperidinium difluoro(oxalato)borate Pip13DFOB ionic liquid (IL), originally synthesized in our laboratory, as an additive for liquid electrolytes in lithium-ion batteries (LIBs), is proposed. The synthesized IL exhibits glass and melting transitions at −70.9 °C and 17.1 °C, respectively, and a thermal decomposition temperature over 230 °C. A mixture based on 1.0 M LiPF6 in 1:1 v/v ethylene carbonate (EC): dimethyl carbonate (DMC) electrolyte solution (so called LP30) and the IL was prepared and tested in lithium metal cells versus two different commercially available carbonaceous electrodes, i.e., graphite (KS6) and graphene (GnP), and versus a high voltage LiNi0.5Mn1.5O4 (LNMO) cathode. A noticeable improvement was observed for Li|LNMO cells with an IL-added electrolyte, which exhibited a high specific capacity above 120 mAh g−1 with a Coulombic efficiency above 93% throughout 200 cycles, while the efficiency fell below 80% after 80 cycles with the absence of IL. The results confirm that the IL is promising additive for the electrolyte, especially for a longer cycle life of high-voltage cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.