Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from farfield records 1,2,3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth 2 . This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene 4,5 . Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here, we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.
In order to reveal provenance of detrital sediments supplied by West Antarctic Ice Sheet (WAIS), 19 glaciomarine cores of Last Glacial Maximum age were analyzed from Eastern Ross Sea and Sulzberger Bay. Analytical techniques included petrographic analysis of gravel‐sized clasts, geochronology (zircon U‐Pb: Zrn‐UPb) and thermochronology (apatite fission track: AFT) of sand‐sized fractions. Petrographic analysis revealed a similarity with the lithologies presently exposed in western Marie Byrd Land (MBL), with major roles played by low‐grade metamorphic rocks and granitoids. Furthermore Zrn‐UPb and AFT data allowed to identify the ages of formation and cooling of sedimentary source area, consisting of Cambrian‐Precambrian basement (i.e., Swanson Formation in western MBL) which underwent at least two episodes of magma intrusion, migmatization and cooling during Devonian‐Carboniferous and Cretaceous‐Paleocene times. Scarcity of volcanic clasts in the region of Ross Sea along the front of West Antarctica Ice Streams in association with the occurrence of AFT Oligocene‐Pliocene dates suggests a localized tectonic exhumation of portions of MBL, as already documented for the opposite side of West Antarctic Rift System in the Transantarctic Mountains. Furthermore, a Zrn‐UPb and AFT population of Late Triassic‐Jurassic age indicates the presence of unexposed rocks that formed or metamorphosed at that time in the sedimentary source area, which could be identified in McAyeal Ice Stream and Bindschadler Ice Stream catchment areas.
Here, the potential of laser-induced breakdown spectroscopy (LIBS) in grading calcareous rocks for the lime industry was investigated. In particular, we developed a system equipped with non-intensified detectors operating in scanning mode, defined a suitable data acquisition protocol, and implemented quantitative data processing using both partial least squares regression (PLS-R) and a multilayer perceptron (MLP) neural network. Tests were carried out on 32 samples collected in various limestone quarries, which were preliminarily analyzed using traditional laboratory X-ray fluorescence (XRF); then, they were divided into two groups for calibration and validation. Particular attention was dedicated to the development of LIBS methodology providing a reliable basis for precise material grading. The congruence of the results achieved demonstrates the capability of the present approach to precisely quantify major and minor geochemical components of calcareous rocks, thus disclosing a concrete application perspective within the lime industry production chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.