Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from farfield records 1,2,3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth 2 . This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene 4,5 . Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here, we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.
The Lower Permian tillites of the Beacon Supergroup, cropping out in Victoria Land (Antarctica), record climatic history during one of the Earth’s coldest periods: the Late Paleozoic Ice Age. Reconstruction of ice-extent and paleo-flow directions, as well as geochronological and petrographic data, are poorly constrained in this sector of Gondwana. Here, we provide the first detrital zircon U-Pb age analyses of both the Metschel Tillite in southern Victoria Land and some tillites correlatable with the Lanterman Formation in northern Victoria Land to identify the source regions of these glaciogenic deposits. Six-hundred detrital zircon grains from four diamictite samples were analyzed using laser ablation−inductively coupled plasma−mass spectrometry. Geochronological and petrographic compositional data of the Metschel Tillite indicate a widespread reworking of older Devonian Beacon Supergroup sedimentary strata, with minor contribution from Cambro-Ordovician granitoids and meta-sedimentary units as well as Neoproterozoic metamorphic rocks. Euhedral to subhedral Carboniferous−Devonian zircon grains match coeval magmatic units of northern Victoria Land and Marie Byrd Land. This implies, in accordance with published paleo-ice directions, a provenance from the east-southeast sectors. In contrast, the two samples from northern Victoria Land tillite reflect the local basement provenance; their geochronological age and petrographic composition indicates a restricted catchment area with multiple ice centers. This shows that numerous ice centers were present in southern Gondwana during the Late Paleozoic Ice Age. While northern Victoria Land hosted discrete glaciers closely linked with the northern Victoria Land-Tasmania ice cap, the west-northwestward flowing southern Victoria Land ice cap contributed most of the sediments comprising the Metschel Tillite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.