Netherton syndrome (NS) is a rare and potentially life-threatening genetic skin disease responsible for skin inflammation and scaling, hair abnormalities and severe allergic manifestations. NS is caused by loss-of-function variants in Serine Peptidase Inhibitor Kazal-Type 5 (SPINK5), encoding the serine protease inhibitor LEKTI. NS patients have a profound skin barrier defect caused by unopposed kallikrein-related proteases activity (KLKs). They develop severe skin inflammation with eczematous-like lesions and high serum IgE levels. Multiomics studies have revealed that the IL-17/IL-36 pathway is the most predominant upregulated pathway in NS. It is associated with a Th2 signature with complement activation in the ichthyosis linearis circumflexa subtype, and with interferon and Th9 activation in the scaly erythrodermic form. Several case reports proved the efficacy of different biotherapies targeting IL-17A, IL-12/IL-23, IL-4R and IL-13R, TNF-a and IL-1β in pediatric NS patients. Intravenous immunoglobulins (IVIG) have also shown efficacy. These studies showed no severe side effects. At present, IL-17 blockade seems to be the most efficient treatment, but case reports remain limited with small numbers of patients and no placebo-control. Additional pathways must also be explored, and more efficient strategies could be used to block IL-17 and IL-23 pathways. In the future, the combination of specific strategies aiming at repairing the initial skin barrier defect could potentiate the efficacy of biologics. The current reports suggest that biological therapy is safe and often effective at pediatric age. However, controlled clinical trials that include a larger number of patients need to be conducted to reach more reliable conclusions.
Anisakids are nematodes responsible for different clinical patterns in humans. The well-known human-infecting Anisakis species include members of the Anisakis simplex (AS) complex. Humans usually contract anisakiasis through ingestion of raw or undercooked seafood containing Anisakis larvae. Once Anisakis has been ingested, patients may develop disease driven directly by Anisakis larvae and/or by allergic reaction due to this nematode. The capability of inducing allergic reactions depends on the expression of specific antigens by nematodes and host factors. This study aims to resume actual knowledge about AS and Anisakiasis with regard to epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment. Particular attention is paid to Anisakis allergens and their cross-reactivity on available diagnostic methods, and defining a diagnostic pathway for Anisakis allergy. Because only a few data are available in the literature about pediatric population, we focus on this group of patients specifically.
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.