The design of the propulsion system for Unmanned Aerial Vehicles (UAVs) demands an inclusive multidisciplinary approach from the earliest design phases, since every design choice strictly affects and is affected by the overall working conditions. This paper presents a review of the scientific literature focused on the design methods applied in defining and sizing the propulsion system of drones. The analysis, performed with a systematic approach, evaluated 123 papers according to two custom classification taxonomies, which investigated respectively the primary aim and specific content of the works. Finally, literature indications and hints were combined into an integrated framework for the functional design of the propulsion system of UAVs. The procedure aimed to support the designer in the preliminary selection of the propulsion candidates and the quick sizing of the supply system, during the first phases of the design process. According to the literature, design methods dramatically change depending on the expected applications and working conditions of UAVs, so that the detailed design of specific drone elements and propulsion components represents the focus of most of the papers in this field.
Investigations about the feasibility of delivery systems with unmanned aerial vehicles (UAVs) or drones have been recently expanded, owing to the exponential demand for goods to be delivered in the recent years, which has been further increased by the COVID-19 pandemic. UAV delivery can provide new contactless delivery strategies, in addition to applications for medical items, such as blood, medicines, or vaccines. The safe delivery of goods is paramount for such applications, which is facilitated if the payload is embedded in the main drone body. In this paper, we investigate payload solutions for medium and small package delivery (up to 5 kg) with a medium-sized UAV (maximum takeoff of less than 25 kg), focusing on (i) embedded solutions (packaging hosted in the drone fuselage), (ii) compatibility with transportation of medical items, and (iii) user-oriented design (usability and safety). We evaluate the design process for possible payload solutions, from an analysis of the package design (material selection, shape definition, and product industrialization) to package integration with the drone fuselage (possible solutions and comparison of quick-release systems). We present a prototype for an industrialized package, a right prism with an octagonal section made of high-performance double-wall cardboard, and introduce a set of concepts for a quick-release system, which are compared with a set of six functional parameters (mass, realization, accessibility, locking, protection, and resistance). Further analyses are already ongoing, with the aim of integrating monitoring and control capabilities into the package design to assess the condition of the delivered goods during transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.