Modern scientific studies often require the identification of a subset of relevant explanatory variables, in the attempt to understand an interesting phenomenon. Several statistical methods have been developed to automate this task, but only recently has the framework of model-free knockoffs proposed a general solution that can perform variable selection under rigorous type-I error control, without relying on strong modeling assumptions. In this paper, we extend the methodology of model-free knockoffs to a rich family of problems where the distribution of the covariates can be described by a hidden Markov model (HMM). We develop an exact and efficient algorithm to sample knockoff copies of an HMM. We then argue that combined with the knockoffs selective framework, they provide a natural and powerful tool for performing principled inference in genome-wide association studies with guaranteed FDR control. Finally, we apply our methodology to several datasets aimed at studying the Crohn's disease and several continuous phenotypes, e.g. levels of cholesterol.
This paper introduces a machine for sampling approximate model-X knockoffs for arbitrary and unspecified data distributions using deep generative models. The main idea is to iteratively refine a knockoff sampling mechanism until a criterion measuring the validity of the produced knockoffs is optimized; this criterion is inspired by the popular maximum mean discrepancy in machine learning and can be thought of as measuring the distance to pairwise exchangeability between original and knockoff features. By building upon the existing model-X framework, we thus obtain a flexible and model-free statistical tool to perform controlled variable selection. Extensive numerical experiments and quantitative tests confirm the generality, effectiveness, and power of our deep knockoff machines. Finally, we apply this new method to a real study of mutations linked to changes in drug resistance in the human immunodeficiency virus. * These authors are listed in alphabetical order.
We present KnockoffZoom, a flexible method for the genetic mapping of complex traits at multiple resolutions. KnockoffZoom localizes causal variants by testing the conditional associations of genetic segments of decreasing width while provably controlling the false discovery rate using artificial genotypes as negative controls. Our method is equally valid for quantitative and binary phenotypes, making no assumptions about their genetic architectures.Instead, we rely on well-established genetic models of linkage disequilibrium. We demonstrate that our method can detect more associations than mixed effects models and achieve fine-mapping precision, at comparable computational cost. Lastly, we apply KnockoffZoom to data from 350k subjects in the UK Biobank and report many new findings.
In the statistical analysis of genome-wide association data, it is challenging to precisely localize the variants that affect complex traits, due to linkage disequilibrium, and to maximize power while limiting spurious findings. Here we report on KnockoffZoom: a flexible method that localizes causal variants at multiple resolutions by testing the conditional associations of genetic segments of decreasing width, while provably controlling the false discovery rate. Our method utilizes artificial genotypes as negative controls and is equally valid for quantitative and binary phenotypes, without requiring any assumptions about their genetic architectures. Instead, we rely on well-established genetic models of linkage disequilibrium. We demonstrate that our method can detect more associations than mixed effects models and achieve fine-mapping precision, at comparable computational cost. Lastly, we apply KnockoffZoom to data from 350k subjects in the UK Biobank and report many new findings.
We introduce a method to draw causal inferences—inferences immune to all possible confounding—from genetic data that include parents and offspring. Causal conclusions are possible with these data because the natural randomness in meiosis can be viewed as a high-dimensional randomized experiment. We make this observation actionable by developing a conditional independence test that identifies regions of the genome containing distinct causal variants. The proposed digital twin test compares an observed offspring to carefully constructed synthetic offspring from the same parents to determine statistical significance, and it can leverage any black-box multivariate model and additional nontrio genetic data to increase power. Crucially, our inferences are based only on a well-established mathematical model of recombination and make no assumptions about the relationship between the genotypes and phenotypes. We compare our method to the widely used transmission disequilibrium test and demonstrate enhanced power and localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.