Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms lead some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this question positively, in the form of the Plug-and-Play Prior (P 3 ) method, showing that any inverse problem can be handled by sequentially applying image denoising steps. This relies heavily on the ADMM optimization technique in order to obtain this chained denoising interpretation.Is this the only way in which tasks in image processing can exploit the image denoising engine? In this paper we provide an alternative, more powerful and more flexible framework for achieving the same goal. As opposed to the P 3 method, we offer Regularization by Denoising (RED): using the denoising engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive Laplacian-based regularization functional, making the overall objective functional clearer and better defined. With a complete flexibility to choose the iterative optimization procedure for minimizing the above functional, RED is capable of incorporating any image denoising algorithm, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result. We test this approach and demonstrate state-of-the-art results in the image deblurring and super-resolution problems.
Given an image, we wish to produce an image of larger size with significantly more pixels and higher image quality. This is generally known as the Single Image Super-Resolution (SISR) problem. The idea is that with sufficient training data (corresponding pairs of low and high resolution images) we can learn set of filters (i.e. a mapping) that when applied to given image that is not in the training set, will produce a higher resolution version of it, where the learning is preferably low complexity. In our proposed approach, the run-time is more than one to two orders of magnitude faster than the best competing methods currently available, while producing results comparable or better than state-of-the-art.A closely related topic is image sharpening and contrast enhancement, i.e., improving the visual quality of a blurry image by amplifying the underlying details (a wide range of frequencies). Our approach additionally includes an extremely efficient way to produce an image that is significantly sharper than the input blurry one, without introducing artifacts such as halos and noise amplification. We illustrate how this effective sharpening algorithm, in addition to being of independent interest, can be used as a pre-processing step to induce the learning of more effective upscaling filters with built-in sharpening and contrast enhancement effect.
This paper introduces a machine for sampling approximate model-X knockoffs for arbitrary and unspecified data distributions using deep generative models. The main idea is to iteratively refine a knockoff sampling mechanism until a criterion measuring the validity of the produced knockoffs is optimized; this criterion is inspired by the popular maximum mean discrepancy in machine learning and can be thought of as measuring the distance to pairwise exchangeability between original and knockoff features. By building upon the existing model-X framework, we thus obtain a flexible and model-free statistical tool to perform controlled variable selection. Extensive numerical experiments and quantitative tests confirm the generality, effectiveness, and power of our deep knockoff machines. Finally, we apply this new method to a real study of mutations linked to changes in drug resistance in the human immunodeficiency virus. * These authors are listed in alphabetical order.
Convolutional Sparse Coding (CSC) is an increasingly popular model in the signal and image processing communities, tackling some of the limitations of traditional patchbased sparse representations. Although several works have addressed the dictionary learning problem under this model, these relied on an ADMM formulation in the Fourier domain, losing the sense of locality and the relation to the traditional patch-based sparse pursuit. A recent work suggested a novel theoretical analysis of this global model, providing guarantees that rely on a localized sparsity measure. Herein, we extend this local-global relation by showing how one can efficiently solve the convolutional sparse pursuit problem and train the filters involved, while operating locally on image patches. Our approach provides an intuitive algorithm that can leverage standard techniques from the sparse representations field. The proposed method is fast to train, simple to implement, and flexible enough that it can be easily deployed in a variety of applications. We demonstrate the proposed training scheme for image inpainting and image separation, while achieving state-of-the-art results.
The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the forward pass in a CNN is equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors from a given input signal. Despite having served as a pivotal connection between CNNs and sparse modeling, a deeper understanding of the ML-CSC is still lacking. In this work, we propose a sound pursuit algorithm for the ML-CSC model by adopting a projection approach. We provide new and improved bounds on the stability of the solution of such pursuit and we analyze different practical alternatives to implement this in practice. We show that the training of the filters is essential to allow for non-trivial signals in the model, and we derive an online algorithm to learn the dictionaries from real data, effectively resulting in cascaded sparse convolutional layers. Last, but not least, we demonstrate the applicability of the ML-CSC model for several applications in an unsupervised setting, providing competitive results. Our work represents a bridge between matrix factorization, sparse dictionary learning and sparse autoencoders, and we analyze these connections in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.