Given an image, we wish to produce an image of larger size with significantly more pixels and higher image quality. This is generally known as the Single Image Super-Resolution (SISR) problem. The idea is that with sufficient training data (corresponding pairs of low and high resolution images) we can learn set of filters (i.e. a mapping) that when applied to given image that is not in the training set, will produce a higher resolution version of it, where the learning is preferably low complexity. In our proposed approach, the run-time is more than one to two orders of magnitude faster than the best competing methods currently available, while producing results comparable or better than state-of-the-art.A closely related topic is image sharpening and contrast enhancement, i.e., improving the visual quality of a blurry image by amplifying the underlying details (a wide range of frequencies). Our approach additionally includes an extremely efficient way to produce an image that is significantly sharper than the input blurry one, without introducing artifacts such as halos and noise amplification. We illustrate how this effective sharpening algorithm, in addition to being of independent interest, can be used as a pre-processing step to induce the learning of more effective upscaling filters with built-in sharpening and contrast enhancement effect.
No abstract
The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization.
In this chapter we will cover approaches for creating visually complex, rich interactive environments as a case study of developing the world of ATI "ToyShop" demo. We will discuss the constraints for developing large immersive worlds in real-time, and go over the considerations for developing lighting environments for such scene rendering. Rainspecific effects in city environments will be presented. We will overview the lightning system used to create illumination from the lightning flashes, the high dynamic range rendering techniques used, various approaches for rendering rain effects and dynamic water simulation on the GPU. Methods for rendering reflections in real-time will be illustrated. Additionally, a number of specific material shaders for enhancing the feel of the rainy urban environment will be examined.
A region-based approach to nonrigid motion tracking is described. Shape is defined in terms of a deformable triangular mesh that captures object shape plus a color texture map that captures object appearance. Photometric variations are also modeled. Nonrigid shape registration and motion tracking are achieved by posing the problem as an energy-based, robust minimization procedure. The approach provides robustness to occlusions, wrinkles, shadows, and specular highlights. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PCs, and game consoles. This enables nonrigid tracking at speeds approaching video rate. Ó 2003 Published by Elsevier Science (USA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.