Many imaging methods have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarkers characteristics of the injured organ have not yet been described. Hyperpolarized [1-13C]pyruvate allows real time monitoring of metabolism in vivo. ParaHydrogen Induced Polarization (PHIP) is a portable, cost effective technique able to generate 13C MR hyperpolarized molecules within seconds. The introduction of the Side Arm Hydrogenation (SAH) strategy offered a way to widen the field of PHIP generated systems and to make this approach competitive with the currently applied dissolution-DNP (Dynamic Nuclear Polarization) method. Herein, we describe the first in vivo metabolic imaging study using the PHIP-SAH hyperpolarized [1-13C]pyruvate. In vivo maps of pyruvate and of its metabolic product lactate have been acquired on a 1 T MRI scanner. By comparing pyruvate/lactate 13C label exchange rate in a mouse model of dilated cardiomyopathy, it has been found that the metabolic dysfunction occurring in the cardiac muscle of the diseased mice can be detected well before the disease can be assessed by echocardiographic investigations.
Ser31 phosphorylated desmin is a likely candidate seed for the nucleation process leading to cardiac PAOs deposition. Desmin post-translational processing and misfolding constitute a new, attractive avenue for the diagnosis and treatment of the cardiac accumulation of toxic PAOs that can now be measured by positron emission tomography in acquired HF.
SignificancePathological cardiac hypertrophy, characterized by heart growth in response to pressure or volume overload, such as in the setting of hypertension, is the main risk factor for heart failure (HF). The identification of therapeutic strategies to prevent or reverse cardiac hypertrophy is therefore a priority for curing HF. It is known that growth hormone-releasing hormone (GHRH) displays cardioprotective functions; however, its therapeutic potential in hypertrophy and HF is unknown. Here we show that GHRH reduces cardiomyocyte hypertrophy in vitro through inhibition of hypertrophic pathways. In vivo, the GHRH analog MR-409 attenuates cardiac hypertrophy in mice subjected to transverse aortic constriction and improves cardiac function. These findings suggest therapeutic use of GHRH analogs for treatment of pathological cardiac hypertrophy and HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.