Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of this anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi-and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multidisciplinary research and serve a diverse community of users.
Marine data are needed for many purposes: for acquiring a better scientific understanding of the marine environment, but also, increasingly, as marine knowledge for decision making as well as developing products and services supporting economic growth. Data must be of sufficient quality to meet the specific users' needs. It must also be accessible in a timely manner. And yet, despite being critical, this timely access to known-quality data proves challenging. Europe's marine data have traditionally been collected by a myriad of entities with the result that much of our data are scattered throughout unconnected databases and repositories. Even when data are available, they are often not compatible, making the sharing of the information and data aggregation particularly challenging. In this paper, we present how the European Marine Observation and Data network (EMODnet) has developed over the last decade to tackle these issues. Today, EMODnet is comprised of more than 150 organizations which gather marine data, metadata, and data products and make them more easily accessible for a wider range of users. EMODnet currently consists of seven sub-portals: bathymetry, geology, physics, chemistry, biology, seabed habitats, and human activities. In addition, Sea-basin Checkpoints have been established to assess the observation capacity in the North Sea, Mediterranean, Atlantic, Baltic, Artic, and Black Sea. The Checkpoints identify whether the observation infrastructure in Europe Martín Míguez et al. EMODnet: Visions and Roles meets the needs of users by undertaking a number of challenges. To complement this, a Data Ingestion Service has been set up to tackle the problem of the wealth of marine data that remain unavailable, by reaching out to data holders, explaining the benefits of sharing their data and offering a support service to assist them in releasing their data and making them available through EMODnet. The EMODnet Central Portal (www.emodnet. eu) provides a single point of access to these services, which are free to access and use. The strategic vision of EMODnet in the next decade is also presented, together with key focal areas toward a more user-oriented service, including EMODnet for business, internationalization for global users, and stakeholder engagement to connect the diverse communities across the marine knowledge value chain.
Abstract. The European Union set the ambitious objective to reach within 2020 the goal of Good Environmental Status. The European Commission (2008) represents the legislative framework that drives member state efforts to reach it. The Integrated Maritime Policy supported the need to provide a European knowledge base able to drive sustainable development by launching in 2009 a new European Marine Observation and Data Network (EMODnet). Through a stepwise approach, EMODnet Chemistry aims to provide high-quality marine environmental data and related products at the scale of regions and sub-regions defined by the Marine Strategy Framework Directive. The chemistry lot takes advantage and further develops the SeaDataNet panEuropean infrastructure and the distributed approach, linking together a network of more than 100 National Oceanographic Data Centres providing data from more than 500 data originators. The close interaction with EEA, RSCs, ICES and EMODnet-MSFD coordination group facilitated the identification of the most appropriate set of information required for the MSFD process. EMODnet Chemistry provides aggregated and validated regional data collections for nutrients, dissolved gasses, chlorophyll, and contaminants, properly visualized with OGC WMS and WPS viewing services. Concentration maps with 10-year moving window from 1960 to 2014, by season and for selected vertical layers, are computed and made available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.