Experimental and numerical studies were conducted to investigate tip-leakage flow and its relationship to stall in a transonic axial compressor. The computational fluid dynamics (CFD) results were used to identify the existence of an interface between the approach flow and the tip-leakage flow. The experiments used a surface-streaking visualization method to identify the time-averaged location of this interface as a line of zero axial shear stress at the casing. The axial position of this line, denoted xzs, moved upstream with decreasing flow coefficient in both the experiments and computations. The line was consistently located at the rotor leading edge plane at the stalling flow coefficient, regardless of inflow boundary condition. These results were successfully modeled using a control volume approach that balanced the reverse axial momentum flux of the tip-leakage flow with the momentum flux of the approach fluid. Nonuniform tip clearance measurements demonstrated that movement of the interface upstream of the rotor leading edge plane leads to the generation of short length scale rotating disturbances. Therefore, stall was interpreted as a critical point in the momentum flux balance of the approach flow and the reverse axial momentum flux of the tip-leakage flow.
Numerical investigations were conducted to predict the performance of a transonic axial compressor rotor with circumferential groove casing treatment. The Notre Dame Transonic Axial Compressor (ND-TAC) was simulated by Tsinghua University with an in-house CFD code (NSAWET) for this work. Experimental data from the ND-TAC were used to define the geometry, boundary conditions and data sampling method for the numerical simulation. These efforts, combined with several unique simulation approaches, such as non-matched grid boundary technology to treat the periodic boundaries and interfaces between groove grids and the passage grid, resulted in good agreement between the numerical and experimental results for overall compressor performance and radial profiles of exit total pressure. Efforts were made to study blade level flow mechanisms to determine how the casing treatment impacts the compressor’s stall margin and performance. The flow structures in the passage, the tip gap and the grooves as well as their mutual interactions were plotted and analyzed. The flow and momentum transport across the tip gap in the smooth wall and the casing treatment configurations were quantitatively compared.
A numerical and experimental study was conducted to investigate the tip clearance flow and its relationship to stall in a transonic axial compressor. The CFD results were used to identify the existence of an interface between incoming axial flow and the reverse tip clearance flow. A surface streaking method was used to experimentally identify this interface as a line of zero axial shear stress at the casing. The position of this line, denoted xzs, moved upstream with decreasing flow coefficient in both the experiments and computations. The line was found to be at the rotor leading edge plane when the compressor stalled. Further measurements using rotor offset and inlet distortion further corroborated these results, and demonstrated that the movement of the interface upstream of the leading edge leads to the generation of rotating (“spike”) disturbances. Stall was therefore interpreted to occur as a result of a critical momentum balance between the approach fluid and the tip-leakage flow.
Numerical investigations were conducted to predict the performance of a transonic axial compressor rotor with circumferential groove casing treatment. The Notre Dame Transonic Axial Compressor (ND-TAC) was simulated at Tsinghua University with an in-house computational fluid dynamics (CFD) code (NSAWET) for this work. Experimental data from the ND-TAC were used to define the geometry, boundary conditions, and data sampling method for the numerical simulation. These efforts, combined with several unique simulation approaches, such as nonmatched grid boundary technology to treat the periodic boundaries and interfaces between groove grids and the passage grid, resulted in good agreement between the numerical and experimental results for overall compressor performance and radial profiles of exit total pressure. Efforts were made to study blade level flow mechanisms to determine how the casing treatment impacts the compressor's stall margin and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analyzed. The flow and momentum transport across the tip gap in the smooth wall and the casing treatment configurations were quantitatively compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.