The World Health Organization (WHO) has declared coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Global health care now faces unprecedented challenges with widespread and rapid human-to-human transmission of SARS-CoV-2 and high morbidity and mortality with COVID-19 worldwide. Across the world, medical care is hampered by a critical shortage of not only hand sanitizers, personal protective equipment, ventilators, and hospital beds, but also impediments to the blood supply. Blood donation centers in many areas around the globe have mostly closed. Donors, practicing social distancing, some either with illness or undergoing self-quarantine, are quickly diminishing. Drastic public health initiatives have focused on containment and “flattening the curve” while invaluable resources are being depleted. In some countries, the point has been reached at which the demand for such resources, including donor blood, outstrips the supply. Questions as to the safety of blood persist. Although it does not appear very likely that the virus can be transmitted through allogeneic blood transfusion, this still remains to be fully determined. As options dwindle, we must enact regional and national shortage plans worldwide and more vitally disseminate the knowledge of and immediately implement patient blood management (PBM). PBM is an evidence-based bundle of care to optimize medical and surgical patient outcomes by clinically managing and preserving a patient’s own blood. This multinational and diverse group of authors issue this “Call to Action” underscoring “The Essential Role of Patient Blood Management in the Management of Pandemics” and urging all stakeholders and providers to implement the practical and commonsense principles of PBM and its multiprofessional and multimodality approaches.
This study tested the effects of sympathetically mediated changes in blood flow to active muscles on muscle O2 uptake (VO2) in humans. Four minutes of graded (15-80% of maximum voluntary contraction, MVC) rhythmic handgrip exercise were performed. Forearm blood flow (FBF) (plethysmography) and deep vein O2 saturation were measured each minute. Forearm O2 uptake was calculated using the Fick principle. In protocol 1, exercise was performed while supine and again while upright to augment sympathetic outflow to the active muscles. Standing reduced FBF at rest from 3.6 to 2.2 ml.100 ml-1.min-1 (P < 0.05). During light exercise (15-40% MVC) FBF was unaffected by body position. Standing reduced FBF (P < 0.05) from 36.0 to 25.2 ml.100 ml-1.min-1 and forearm VO2 from 38.2 to 28.1 ml.kg-1.min-1 during the final work load. In protocol 2, exercise was performed while supine before and after local anesthetic block of the sympathetic nerves to the forearm. Sympathetic block increased FBF at rest from 3.1 to 8.9 ml.100 ml-1.min-1 (P < 0.05), and FBF was higher during all work loads At 70-80% of MVC sympathetic block increased FBF from 35.4 to 50.7 ml.100 ml-1.min-1 (P < 0.05), and forearm VO2 from 45.5 to 54.2 ml.kg-1.min-1 (P < 0.05). These results suggest that in humans sympathetic nerves modulate blood flow to active muscles during light and heavy rhythmic exercise and that this restraint of flow can limit O2 uptake in muscles performing heavy rhythmic exercise.
Diffuse traumatic axonal injury (TAI) is a type of traumatic brain injury (TBI) characterized predominantly by white matter damage. While TAI is associated with cerebral atrophy, the relationship between gray matter volumes and TAI of afferent or efferent axonal pathways remains unknown. Moreover, it is unclear if deficits in cognition are associated with post-traumatic brain volumes in particular regions. The goal of this study was to determine the relationship between markers of TAI and volumes of cortical and subcortical structures, while also assessing the relationship between cognitive outcomes and regional brain volumes. High-resolution magnetic resonance imaging scans were performed in 24 patients with TAI within 1 week of injury and were repeated 8 months later. Diffusion tensor imaging (DTI) tractography was used to reconstruct prominent white matter tracts and calculate their fractional anisotropy (FA) and mean diffusivity (MD) values. Regional brain volumes were computed using semi-automated morphometric analysis. Pearson's correlation coefficients were used to assess associations between brain volumes, white matter integrity (i.e., FA and MD), and neuropsychological outcomes. Post-traumatic volumes of many gray matter structures were associated with chronic damage to related white matter tracts, and less strongly associated with measures of white matter integrity in the acute scans. For example, left and right hippocampal volumes correlated with FA in the fornix body (r ¼ 0.600, p ¼ 0.001; r ¼ 0.714, p < 0.001, respectively). In addition, regional brain volumes were associated with deficits in corresponding neuropsychological domains. Our results suggest that TAI may be a primary mechanism of post-traumatic atrophy, and provide support for regional morphometry as a biomarker for cognitive outcome after injury.
To assess disparities in hypoxemia detection by pulse oximetry across self-identified racial groups and associations with clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.