c-Abl is normally regulated by an autoinhibitory mechanism, the disruption of which leads to chronic myelogenous leukemia. The details of this mechanism have been elusive because c-Abl lacks a phosphotyrosine residue that triggers the assembly of the autoinhibited form of the closely related Src kinases by internally engaging the SH2 domain. Crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b binds to the kinase domain and induces conformational changes that allow the SH2 and SH3 domains to dock onto it. Autoinhibited c-Abl forms an assembly that is strikingly similar to that of inactive Src kinases but with specific differences that explain the differential ability of the drug STI-571/Gleevec/imatinib (STI-571) to inhibit the catalytic activity of Abl, but not that of c-Src.
A sequence of ordered solvent peaks in the electron density map of the minor groove region of ApT-rich tracts of the double helix is a characteristic of B-form DNA well established from crystallography. This feature, termed the “spine of hydration”, has been discussed as a stabilizing feature of B-DNA, the structure of which is known to be sensitive to environmental effects. Nanosecond-range molecular dynamics simulations on the DNA duplex of sequence d(CGCGAATTCGCG) have been carried out, including explicit consideration of ∼4000 water molecules and 22 Na+ counterions, and based on the new AMBER 4.1 force field with the particle mesh Ewald summation used in the treatment of long-range interactions. The calculations support a dynamical model of B-DNA closer to the B form than any previously reported. Analysis of the dynamical structure of the solvent revealed that, in over half of the trajectory, a Na+ ion is found in the minor groove localized at the ApT step. This position, termed herein the “ApT pocket”, was noted previously (Lavery, R.; Pullman, B. J. Biomol. Struct. Dyn. 1985, 5, 1021) to be of uniquely low negative electrostatic potential relative to other positions of the groove, a result supported by the location of a Na+ ion in the crystal structure of the dApU miniduplex [Seeman, N.; et al. J. Mol. Biol. 1976, 104, 109) and by additional calculations described herein based on continuum electrostatics. The Na+ ion in the ApT pocket interacts favorably with the thymine O2 atom on opposite strands of the duplex and is well articulated with the water molecules which constitute the remainder of the minor groove spine. This result indicates that counterions may intrude on the minor groove spine of hydration on B-form DNA and subsequently influence the environmental structure and thermodynamics in a sequence-dependent manner. The observed narrowing of the minor groove in the AATT region of the d(CGCGAATTCGCG) structure may be due to direct binding effects and also to indirect modulation of the electrostatic repulsions that occur when a counterion resides in the minor groove “AT pocket”. The idea of localized complexation of otherwise mobile counterions in electronegative pockets in the grooves of DNA helices introduces a heretofore mostly unappreciated source of sequence-dependent effects on local conformational, helicoidal, and morphological structure and may have important implications in understanding the functional energetics and specificity of the interactions of DNA and RNA with regulatory proteins, pharmaceutical agents, and other ligands.
The improper activation of the Abl tyrosine kinase results in chronic myeloid leukemia (CML). The recognition of an inactive conformation of Abl, in which a catalytically important Asp-Phe-Gly (DFG) motif is flipped by approximately 180° with respect to the active conformation, underlies the specificity of the cancer drug imatinib, which is used to treat CML. The DFG motif is not flipped in crystal structures of inactive forms of the closely related Src kinases, and imatinib does not inhibit c-Src. We present a structure of the kinase domain of Abl, determined in complex with an ATP–peptide conjugate, in which the protein adopts an inactive conformation that resembles closely that of the Src kinases. An interesting aspect of the Src-like inactive structure, suggested by molecular dynamics simulations and additional crystal structures, is the presence of features that might facilitate the flip of the DFG motif by providing room for the phenylalanine to move and by coordinating the aspartate side chain as it leaves the active site. One class of mutations in BCR–Abl that confers resistance to imatinib appears more likely to destabilize the inactive Src-like conformation than the active or imatinib-bound conformations. Our results suggest that interconversion between distinctly different inactive conformations is a characteristic feature of the Abl kinase domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.