Lateralization of language to the left hemisphere is considered a key aspect of human brain organization. We used diffusion tensor MRI to perform in vivo virtual dissection of language pathways to assess the relationship between brain asymmetry and cognitive performance in the normal population. Our findings suggest interhemispheric differences in direct connections between Broca's and Wernicke's territories, with extreme leftward lateralization in more than half of the subjects and bilateral symmetrical distribution in only 17.5% of the subjects. Importantly, individuals with more symmetric patterns of connections are better overall at remembering words using semantic association. Moreover, preliminary analysis suggests females are more likely to have a symmetrical pattern of connections. These findings suggest that the degree of lateralization of perisylvian pathways is heterogeneous in the normal population and, paradoxically, bilateral representation, not extreme lateralization, might ultimately be advantageous for specific cognitive functions.arcuate fasciculus ͉ brain asymmetry ͉ diffusion tensor imaging ͉ language lateralization ͉ verbal memory
Individuals born before 33 weeks' gestation are at risk of brain lesions, which have the potential to disrupt subsequent neurodevelopment. As a result they manifest an increased incidence of neuromotor signs and cognitive deficits, which can still be detected in adolescence. The cerebellum is known to be involved in both the co-ordination of movement and in cognitive processes. We therefore set out to establish whether cognitive and motor impairments in adolescents born very pre-term are associated with abnormalities of the cerebellum as revealed by volumetric analysis of brain MRI scans. The volume of the whole cerebellum was determined manually using a PC-based Cavalieri procedure in 67 adolescents born very pre-term and 50 age-matched, full-term born controls. Cognitive and neurological assessments were performed at 1, 4, 8 and 14-15 years of age as part of the long-term follow-up of the pre-term subjects. The pre-term-born subjects had significantly reduced cerebellar volume compared with term-born controls (P<0.001). This difference was still present after controlling for potential confounders. There was no association between cerebellar volume and motor neurological signs. However, there were significant associations between cerebellar volume and several cognitive test scores, in particular the Wechsler Intelligence Scale for Children-Revised, the Kaufman Assessment Battery for Children and the Schonnel reading age. This provides further evidence implicating the cerebellum in cognition and suggests that cerebellar abnormalities may underlie some of the cognitive deficits found in individuals born very pre-term.
Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT) birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM) and white matter (WM) maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM) we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks) and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised) and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001). WM volume in posterior corpus callosum/thalamus/fornix and GM volume in temporal gyri bilaterally, accounted for 21% of the variance of executive function (F = 9.9, p < 0.0001) and WM in the posterior corpus callosum/thalamus/fornix alone accounted for 17% of the variance of total non-verbal memory scores (F = 9.9, p < 0.0001). These results reveal that VPT birth continues to be associated with altered structural brain anatomy in early adult life, although it remains to be ascertained whether these changes reflect neurodevelopmental delays or long lasting structural alterations due to prematurity. GM and WM alterations correlate with length of gestation and mediate cognitive outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.