We report the design and performance of a time-resolved electron diffraction apparatus capable of producing intense bunches with simultaneously single digit micrometer probe size, long coherence length, and 200 fs rms time resolution. We measure the 5d (peak) beam brightness at the sample location in micro-diffraction mode to be [Formula: see text]. To generate high brightness electron bunches, the system employs high efficiency, low emittance semiconductor photocathodes driven with a wavelength near the photoemission threshold at a repetition rate up to 250 kHz. We characterize spatial, temporal, and reciprocal space resolution of the apparatus. We perform proof-of-principle measurements of ultrafast heating in single crystal Au samples and compare experimental results with simulations that account for the effects of multiple scattering.
The paper presents a journal version of the Design Report on
the Optical Stochastic Cooling experiment to be carried out at IOTA
ring in Fermilab later this year. It discusses the theory which
experiment is based on, beam parameters, major requirements to the
storage ring systems and technical details of the experiment
implementation.
a b s t r a c tOptical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystem critical to the OSC scheme is the focusing optics used to image radiation from the upstream ''pickup'' undulator to the downstream ''kicker'' undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.
Optical stochastic cooling (OSC) is a promising technique for the cooling of dense particle beams. Its operation at optical frequencies enables obtaining a much larger bandwidth compared to the wellknown microwave-based stochastic cooling. In the OSC undulator radiation generated by a particle in an upstream "pickup" undulator is amplified and focused at the location of a downstream "kicker" undulator. Inside the kicker, a particle interacts with its own radiation field from the pickup. The resulting interaction produces a longitudinal kick with its value depending on the particles momentum which, when correctly phased, yields to longitudinal cooling. The horizontal cooling is achieved by introducing a coupling between longitudinal and horizontal degrees of freedom. Vertical cooling is achieved by coupling between horizontal and vertical motions in the ring. In this paper, we present formulae for computation of the corrective kick and validate them against numerical simulations performed using a wave-optics computer program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.