BackgroundWearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.MethodsHere we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).ResultsWe provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.ConclusionsOur findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.Electronic supplementary materialThe online version of this article (doi:10.1186/s12984-017-0247-9) contains supplementary material, which is available to authorized users.
Here we present the design of a novel unpowered ankle exoskeleton that is low profile, lightweight, quiet, low cost to manufacture, intrinsically adapts to different walking speeds, and does not restrict non-sagittal joint motion; while still providing assistive ankle torque that can reduce demands on the biological calf musculature. This work is an extension of the previouslysuccessful ankle exoskeleton concept by Collins, Wiggin, and Sawicki. We created a device that blends the torque assistance of the prior exoskeleton with the form-factor benefits of clothing. Our design integrates a low profile under-the-foot clutch and a soft conformal shank interface, coupled by an ankle assistance spring that operates in parallel with the user's calf muscles. We fabricated and characterized technical performance of a prototype through benchtop testing and then validated device functionality in two gait analysis case studies. To our knowledge, this is the first ankle plantarflexion assistance exoskeleton that could be feasibly worn under typical daily clothing, without restricting ankle motion, and without components protruding substantially from the shoe, leg, waist or back. Our new design highlights the potential for performance-enhancing exoskeletons that are inexpensive, unobtrusive, and can be used on a wide scale to benefit a broad range of individuals throughout society, such as the elderly, individuals with impaired plantarflexor muscle strength, or recreational users. In summary, this work demonstrates how an unpowered ankle exoskeleton could be redesigned to more seamlessly integrate into daily life, while still providing performance benefits for common locomotion tasks.
Recent literature emphasizes the importance of comfort in the design of exosuits and other assistive devices that physically augment humans; however, there is little quantitative data to aid designers in determining what level of force makes users uncomfortable. To help close this knowledge gap, we characterized human comfort limits when applying forces to the shoulders, thigh and shank. Our objectives were: (i) characterize the comfort limits for multiple healthy participants, (ii) characterize comfort limits across days, and (iii) determine if comfort limits change when forces are applied at higher vs. lower rates. We performed an experiment (N = 10) to quantify maximum tolerable force pulling down on the shoulders, and axially along the thigh and shank; we termed this force the comfort limit. We applied a series of forces of increasing magnitude, using a robotic actuator, to soft sleeves around their thigh and shank, and to a harness on their shoulders. Participants were instructed to press an offswitch, immediately removing the force, when they felt uncomfortable such that they did not want to feel a higher level of force. On average, participants exhibited comfort limits of~0.9-1.3 times body weight on each segment: 621±245 N (shoulders), 867±296 N (thigh), 702 ±220 N (shank), which were above force levels applied by exosuits in prior literature. However, individual participant comfort limits varied greatly (~250-1200 N). Average comfort limits increased over multiple days (p<3e-5), as users habituated, from~550-700 N on the first day to~650-950 N on the fourth. Specifically, comfort limits increased 20%, 35% and 22% for the shoulders, thigh and shank, respectively. Finally, participants generally tolerated higher force when it was applied more rapidly. These results provide initial benchmarks for exosuit designers and end-users, and pave the way for exploring comfort limits over larger time scales, within larger samples and in different populations.
Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (−8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.