The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.
It has recently been hypothesized that hepatocyte CHO metabolites (hexose-or triose-phosphates) might not only stimulate ChREBP and activate DNL, but might also serve as a signal to enhance HGP (17,18). This hypothesis derives in part from the counterintuitive observation that while ChREBP is known to stimulate glycolysis through transactivation of glycolytic genes (22), it may also transactivate expression of G6pc encoding the enzyme er, from skeletal muscle and adipose tissue enhances hepatic DNL (20). Additionally, siRNA-mediated knockdown of ChREBP in ob/ob mice decreases hepatic DNL in the setting of persistent hyperinsulinemia (21). Thus, hepatic DNL may be regulated by increased substrate delivery independently of insulin signaling. However, whether increasing intrahepatic CHO metabolites might also signal to increase glucose production has not been fully explored.
Although obesity is a risk factor for development of type 2 diabetes and chemical modification of proteins by advanced glycoxidation and lipoxidation end products is implicated in the development of diabetic complications, little is known about the chemical modification of proteins in adipocytes or adipose tissue. In this study we show that S-(2-succinyl)cysteine (2SC), the product of chemical modification of proteins by the Krebs cycle intermediate, fumarate, is significantly increased during maturation of 3T3-L1 fibroblasts to adipocytes. Fumarate concentration increased >5-fold during adipogenesis in medium containing 30 mM glucose, producing a >10-fold increase in 2SC-proteins in adipocytes compared with undifferentiated fibroblasts grown in the same high glucose medium. The elevated glucose concentration in the medium during adipocyte maturation correlated with the increase in 2SC, whereas the concentration of the advanced glycoxidation and lipoxidation end products, N ⑀ -(carboxymethyl)lysine and N ⑀ -(carboxyethyl)lysine, was unchanged under these conditions. Adipocyte proteins were separated by one-and two-dimensional electrophoresis and ϳ60 2SC-proteins were detected using an anti-2SC polyclonal antibody. Several of the prominent and well resolved proteins were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry. These include cytoskeletal proteins, enzymes, heat shock and chaperone proteins, regulatory proteins, and a fatty acid-binding protein. We propose that the increase in fumarate and 2SC is the result of mitochondrial stress in the adipocyte during adipogenesis and that 2SC may be a useful biomarker of mitochondrial stress in obesity, insulin resistance, and diabetes.The adipocyte is increasingly recognized as a dynamic cell that readily adapts to the changing nutritional status of the body. In a state of over-nutrition, the adipocyte responds by synthesizing and storing triglycerides, a process that may eventually lead to obesity and insulin resistance and then to diabetes.Chemical modification of proteins by advanced glycoxidation and lipoxidation end products (AGE/ALEs) 3 is increased in diabetes and is strongly implicated in the development of diabetic complications (1-3). However, relatively little is known about the chemical modification of proteins in adipocytes or adipose tissue or the possible role of chemical modifications of proteins in the regulation of adipocyte metabolism during adipogenesis or diabetogenesis.In general, AGE/ALEs are derivatives of lysine and arginine residues, formed by reaction of the amino or guanidino groups on protein with electrophilic intermediates in carbohydrate and lipid autoxidation or metabolism (4). In contrast to extracellular proteins, the lower pK a sulfhydryl group of cysteine residues is a more likely target for modification by electrophiles on intracellular proteins. We recently described S-(2-succinyl)cysteine (2SC) as a novel chemical modification of cysteine residues in proteins, formed by a...
OBJECTIVE-S-(2-succinyl)cysteine (2SC) is formed by a Michael addition reaction of the Krebs cycle intermediate, fumarate, with cysteine residues in protein. We investigated the role of fumarate in chemical modification and inhibition of the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in vitro and in tissues of diabetic rats.RESEARCH DESIGN AND METHODS-GAPDH was incubated with fumarate in PBS to assess effects of fumarate on enzyme activity in vitro. Sites of 2SC formation were determined by analysis of tryptic peptides by high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. 2SC and fumarate in gastrocnemius muscle of control and streptozotocin-induced diabetic rats were measured by liquid chromatography/tandem mass spectrometry and by gas chromatography/ mass spectrometry, respectively. GAPDH was isolated from muscle by immunoprecipitation, and sites of modification of GAPDH were determined by mass spectrometry analysis. RESULTS-2SCwas found, both in vitro and in vivo, about equally at active-site Cys-149 and nucleophilic Cys-244. Inactivation of GAPDH by fumarate in vitro correlated with formation of 2SC. In diabetic compared with control rats, fumarate and 2SC concentration increased approximately fivefold, accompanied by an ϳ25% decrease in GAPDH specific activity. The fractional modification of GAPDH by 2SC was significantly increased in diabetic versus control animals, consistent with the decreased specific activity of GAPDH in muscle of diabetic animals. CONCLUSIONS-Fumarate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.