Biometric authentication is nowadays widely used in a multitude of scenarios. Several studies have been conducted on electrocardiogram (ECG) for subject identification or verification among the various modalities. However, none have considered a typical implementation with a mobile device and the necessity for a fast-training model with limited recording time for the signal. This study tackles this issue by exploring various classification models on short recordings and evaluating the performance varying the sample length and the training set size. We run our tests on two public datasets collected from wearable and medical devices and propose a pipeline for ECG authentication with limited data required for competitive usage across applications.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Commercial organisations are holding and processing an everincreasing amount of personal data. Policies and laws are continually changing to require these companies to be more transparent regarding collection, storage, processing and sharing of this data. This paper reports our work of taking Booking.com as a case study to visualise personal data flows extracted from their privacy policy. By showcasing how the company shares its consumers' personal data, we raise questions and extend discussions on the challenges and limitations of using privacy policies to inform online users about the true scale and the landscape of personal data flows. This case study can inform us about future research on more data flow-oriented privacy policy analysis and on the construction of a more comprehensive ontology on personal data flows in complicated business ecosystems.
In recent years, digital technologies have grown in many ways. As a result, many school-aged children have been exposed to the digital world a lot. Children are using more digital technologies, so schools need to teach kids more about cyber security and online safety. Because of this, there are now more school programmes and projects that teach students about cyber security and online safety and help them learn and improve their skills. Still, despite many programmes and projects, there is not much proof of how many schools have taken part and helped spread the word about them. This work shows how we can learn about the size and scope of cyber security and online safety education in schools in the UK, a country with a very active and advanced cyber security education profile, using nearly 200k public tweets from over 15k schools. By using simple techniques like descriptive statistics and visualisation as well as advanced natural language processing (NLP) techniques like sentiment analysis and topic modelling, we show some new findings and insights about how UK schools as a sector have been doing on Twitter with their cyber security and online safety education activities. Our work has led to a range of large-scale and real-world evidence that can help inform people and organisations interested in cyber security and teaching online safety in schools.
CCS CONCEPTS• Applied computing → E-learning; • Security and privacy → Social aspects of security and privacy; Human and societal aspects of security and privacy; • Social and professional topics → K-12 education; Informal education;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.