Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.
The unfolding and refolding reaction of myoglobin was examined in solution and within a porous silica sol-gel glass. The sol-gel pores constrain the protein to a volume that is the same size and shape as the folded native state accompanied by a few layers of water solvation. Denaturants such as low pH buffers can be diffused through the gel pores to the protein to initiate unfolding and refolding. Acid-induced unfolding was hindered by the steric constraints imposed by the gel pores such that more denaturing conditions were required within the gel than in solution to create the unfolded state. No new folding intermediates were observed. Refolding of myoglobin was not complete in millimolar pH 7 buffer alone. Addition of 25% glycerol to the pH 7 buffer resulted in nearly complete refolding, and the use of 1 M phosphate buffer resulted in complete refolding. The role of this cosolvent and salt in disrupting the ordered water surrounding the protein within the gel is discussed in light of the Hofmeister series and entropic trapping via a diminished hydrophobic effect within the gel. These results are consistent with the premises of folding models in which secondary and tertiary structures are considered to form within a compact conformation of the protein backbone.
In the version of this article initially published, the IC 50 values in the table in Figure 3c were listed as nM instead of µM. The error has been corrected in the HTML and PDF versions of the article.
772volume 5 number 10 october 2009 nature chemical biology e r r ata
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.