AIMTo perform meta-analysis of the use of Endocuff during average risk screening colonoscopy.METHODSScopus, Cochrane databases, MEDLINE/PubMed, and CINAHL were searched in April 2016. Abstracts from Digestive Disease Week, United European Gastroenterology, and the American College of Gastroenterology meeting were also searched from 2004-2015. Studies comparing EC-assisted colonoscopy (EAC) to standard colonoscopy, for any indication, were included in the analysis. The analysis was conducted by using the Mantel-Haenszel or DerSimonian and Laird models with the odds ratio (OR) to assess adenoma detection, cecal intubation rate, and complications performed.RESULTSNine studies (n = 5624 patients) were included in the analysis. Compared to standard colonoscopy, procedures performed with EC had higher frequencies for adenoma (OR = 1.49, 95%CI: 1.23-1.80; P = 0.03), and sessile serrated adenomas detection (OR = 2.34 95%CI: 1.63-3.36; P < 0.001). There was no significant difference in cecal intubation rates between the EAC group and standard colonoscopy (OR = 1.26, 95%CI: 0.70-2.27, I2 = 0%; P = 0.44). EAC was associated with a higher risk of complications, most commonly being superficial mucosal injury without higher frequency for perforation.CONCLUSIONThe use of an EC on colonoscopy appears to improve pre-cancerous polyp detection without any difference in cecal intubation rates compared to standard colonoscopy.
Successful proximal humerus fracture reconstruction is inherent upon anatomic fracture reduction coupled with medial column support. Results from this experiment suggest that missing the calcar proximally is deleterious to fixation strength, while it is safe, and perhaps even desirable, to aim slightly distal to the intended target.
PurposeIt is postulated that ILD causes PA dilatation independent of the presence of pulmonary hypertension (PH), so the use of PA size to screen for PH is not recommended. The aims of this study were to investigate the association of PA size with the presence and severity of ILD and to assess the diagnostic accuracy of PA size for detecting PH.MethodsIncident patients referred to a tertiary PH centre underwent baseline thoracic CT, MRI and right heart catheterisation (RHC). Pulmonary artery diameter was measured on CT pulmonary angiography and pulmonary arterial areas on MRI. A thoracic radiologist scored the severity of ILD on CT from 0 to 4, 0 = absent, 1 = 1–25%, 2 = 26–50%, 3 = 51–75%, and 4 = 76–100% extent of involvement. Receiver operating characteristic analysis and linear regression were employed to assess diagnostic accuracy and independent associations of PA size.Results110 had suspected PH due to ILD (age 65 years (SD 13), M:F 37:73) and 379 had suspected PH without ILD (age 64 years (SD 13), M:F 161:218). CT derived main PA diameter was accurate for detection of PH in patients both with and without ILD - AUC 0.873, p =< 0.001, and AUC 0.835, p =< 0.001, respectively, as was MRI diastolic PA area, AUC 0.897, p =< 0.001, and AUC 0.857, p =< 0.001, respectively Significant correlations were identified between mean pulmonary arterial pressure (mPAP) and PA diameter in ILD (r = 0.608, p < 0.001), and non-ILD cohort (r = 0.426, p < 0.001). PA size was independently associated with mPAP (p < 0.001) and BSA (p = 0.001), but not with forced vital capacity % predicted (p = 0.597), Transfer factor of the lungs for carbon monoxide (TLCO) % predicted (p = 0.321) or the presence of ILD on CT (p = 0.905). The severity of ILD was not associated with pulmonary artery dilatation (r = 0.071, p = 0.459).ConclusionsPulmonary arterial pressure elevation leads to pulmonary arterial dilation, which is not independently influenced by the presence or severity of ILD measured by FVC, TLCO, or disease severity on CT. Pulmonary arterial diameter has diagnostic value in patients with or without ILD and suspected PH.
Objectives Computed tomography (CT) pulmonary angiography is widely used in patients with suspected pulmonary hypertension (PH). However, the diagnostic and prognostic significance remains unclear. The aim of this study was to (a) build a diagnostic CT model and (b) test its prognostic significance. Methods Consecutive patients with suspected PH undergoing routine CT pulmonary angiography and right heart catheterisation (RHC) were identified. Axial and reconstructed images were used to derive CT metrics. Multivariate regression analysis was performed in the derivation cohort to identify a diagnostic CT model to predict mPAP ≥ 25 mmHg (the existing ESC guideline definition of PH) and > 20 mmHg (the new threshold proposed at the 6th World Symposium on PH). In the validation cohort, sensitivity, specificity and compromise CT thresholds were identified with receiver operating characteristic (ROC) analysis. The prognostic value of the CT model was assessed using Kaplan-Meier analysis. Results Between 2012 and 2016, 491 patients were identified. In the derivation cohort (n = 247), a CT model was identified including pulmonary artery diameter, right ventricular outflow tract thickness, septal angle and left ventricular area. In the validation cohort (n = 244), the model was diagnostic, with an area under the ROC curve of 0.94/0.91 for mPAP ≥ 25/> 20 mmHg respectively. In the validation cohort, 93 patients died; mean follow-up was 42 months. The diagnostic thresholds for the CT model were prognostic, log rank, all p < 0.01. Discussion In suspected PH, a diagnostic CT model had diagnostic and prognostic utility. Key Points • Diagnostic CT models have high diagnostic accuracy in a tertiary referral population of with suspected PH. • Diagnostic CT models stratify patients by mortality in suspected PH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.