Microporous polymers of extreme rigidity are required for gas-separation membranes that combine high permeability with selectivity. We report a shape-persistent ladder polymer consisting of benzene rings fused together by inflexible bridged bicyclic units. The polymer's contorted shape ensures both microporosity-with an internal surface area greater than 1000 square meters per gram-and solubility so that it is readily cast from solution into robust films. These films demonstrate exceptional performance as molecular sieves with high gas permeabilities and good selectivities for smaller gas molecules, such as hydrogen and oxygen, over larger molecules, such as nitrogen and methane. Hence, this polymer has excellent potential for making membranes suitable for large-scale gas separations of commercial and environmental relevance.
A highly gas permeable polymer with exceptional size selectivity is prepared by fusing triptycene units together via a polymerization reaction involving Tröger's base formation. The extreme rigidity of this polymer of intrinsic microporosity (PIM‐Trip‐TB) facilitates gas permeability data that lie well above the benchmark 2008 Robeson upper bounds for the important O2/N2 and H2/N2 gas pairs.
A step-growth polymerisation based on the formation of Tröger's base, performed by simple reaction of a suitable aromatic diamine monomer with dimethoxymethane in trifluoroacetic acid, provides polymers of high average molecular mass. The properties of the resulting polymers can be tailored by the choice of monomer. In particular, the Tröger's base polymerisation is highly suited to the preparation of soluble polymers of intrinsic microporosity (PIMs) due to the resulting fused-ring TB linking group, which is both highly rigid and prohibits conformational freedom.
A series of novel cardo-polymers was prepared using a polymerisation reaction based on Tr öger's base formation. The precursor dianiline monomers are readily available from the reactions between appropriate anilines and cyclic ketones. One adamantyl-based cardo-polymer displays intrinsic microporosity with an apparent BET surface area of 615 m 2 g À1 . This polymer demonstrates a combination of good solubility and high molecular mass facilitating the solvent casting of robust films suitable for gas permeability measurements. The intrinsic microporosity of the polymer provides high gas permeabilities and moderate selectivities with particular promise for gas separations involving hydrogen.
Properties of four polymers of intrinsic microporosity containing Troger's base units were assessed for CO 2 capture experimentally and computationally. Structural properties included average pore size, pore size distribution, surface area, and accessible pore volume, whereas thermodynamic properties focused on density, CO 2 sorption isotherms, and enthalpies of adsorption. It was found that the shape of the contortion site plays a more important role than the polymer density when assessing the capacity of the material, and that the presence of a Troger base unit only slightly affects the amount adsorbed at low pressures, but it does not have any significant influence on the enthalpy of adsorption fingerprint. A comparison of the materials studied with those reported in the literature allowed us to propose a set of guidelines for the design of polymers for CO 2 capture applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.