Structurally disparate molecules reportedly engage and activate Toll-like receptor (TLR) 4 and other TLRs, yet the interactions that mediate binding and activation by dissimilar ligands remain unknown. We describe Neoseptins, chemically synthesized peptidomimetics that bear no structural similarity to the established TLR4 ligand, lipopolysaccharide (LPS), but productively engage the mouse TLR4 (mTLR4)/ myeloid differentiation factor 2 (MD-2) complex. Neoseptin-3 activates mTLR4/MD-2 independently of CD14 and triggers canonical myeloid differentiation primary response gene 88 (MyD88)-and Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF)-dependent signaling. The crystal structure mTLR4/MD-2/Neoseptin-3 at 2.57-Å resolution reveals that Neoseptin-3 binds as an asymmetrical dimer within the hydrophobic pocket of MD-2, inducing an active receptor complex similar to that induced by lipid A. However, Neoseptin-3 and lipid A form dissimilar molecular contacts to achieve receptor activation; hence strong TLR4/MD-2 agonists need not mimic LPS.neoseptins | peptidomimetic compounds | innate immunity | proinflammatory response | crystal structure
Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocim-adjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor-infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti-PD-L1 treatment.
Diprovocim is a recently discovered exceptionally potent, synthetic small molecule agonist of TLR2/TLR1 and has shown significant adjuvant activity in anticancer vaccination against murine melanoma. Since Diprovocim bears no structural similarity to the canonical lipopeptide ligands of TLR2/TLR1, we investigated how Diprovocim interacts with TLR2/TLR1 through in vitro biophysical, structural, and computational approaches. We found that Diprovocim induced the formation of TLR2/TLR1 heterodimers as well as TLR2 homodimers in vitro. We determined the crystal structure of Diprovocim in a complex with a TLR2 ectodomain, which revealed, unexpectedly, two Diprovocim molecules bound to the ligand binding pocket formed between two TLR2 ectodomains. Extensive hydrophobic interactions and a hydrogen-bonding network between *
A screen conducted with nearly 100,000 compounds and a surrogate functional assay for stimulation of an immune response that measured the release of TNF-α from treated human THP-1 myeloid cells differentiated along the macrophage line led to the discovery of the diprovocims. Unique to these efforts and of special interest, the screening leads for this new class of activators of an immune response came from a compound library designed to promote cell surface receptor dimerization. Subsequent comprehensive structure–activity relationship studies improved the potency 800-fold over that of the screening leads, providing diprovocim-1 and diprovocim-2. The diprovocims act by inducing cell surface toll-like receptor(TLR)-2 dimerization and activation with TLR1 (TLR1/TLR2 agonist), bear no structural similarity to any known natural or synthetic TLR agonist, are easy to prepare and synthetically modify, and selected members are active in both human and murine systems. The most potent diprovocim (3, diprovocim-1) elicits full agonist activity at extraordinarily low concentrations (EC50 = 110 pM) in human THP-1 cells, being more potent than the naturally-derived TLR1/TLR2 agonist Pam3CSK4 or any other known small molecule TLR agonist.
Lepadiformine A, B and C were synthesized in enantiomerically pure form using a reductive cyclization strategy. N-Boc α-amino nitriles were deprotonated and alkylated with enantiomerically pure dibromides to afford the first ring. The products were manipulated to introduce phosphate leaving-groups, and subsequent reductive lithiation followed by intramolecular alkylation formed the second ring with high stereoselectivity. The third ring was formed by intramolecular displacement of a mesylate by the deprotected amine. Lepadiformine A and B contain a hydroxymethyl group adjacent to the amine. This appendage was introduced in a sequence using a Polonovski-Potier reaction as the key step. The synthetic strategy is stereoselective and convergent, and demonstrates the utility of N-Boc α-amino nitriles as linchpins for alkaloid synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.