Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-βI, -βII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer.
Continuous GPS tracking devices always suffer short battery life when used by caregivers to reduce the risk of wandering to dangerous areas by dementia patients. Currently the best existing tracker for dementia patients on the market only supports less than 10 hours battery life with a gigantic battery. It not only requires daily battery charging from patients/caregivers, but also becomes a very restrictive device. In this paper we inspected individual energy consumption of the components in a GPS tracker and proposed a novel energy efficient, small wristband by integrating the latest LoRa communication and GPS duty cycling technologies. We verify our prototype's communication distance and energy efficiency through extensive experiments in the real world. Our model and data show the GPS wristband is able to support up to 40 hours continuous GPS tracking with a frequent 60 seconds location update rate. Its range also spans 3km, effectively monitoring patient locations.
Plasmonic gold nanostructures are a prevalent tool in modern hypersensitive analytical techniques such as photoablation, bioimaging, and biosensing. Recent studies have shown that gold nanostructures generate transient nanobubbles through localized heating and have been found in various biomedical applications. However, the current method of plasmonic nanoparticle cavitation events has several disadvantages, specifically including small metal nanostructures (≤10 nm) which lack size control, tuneability, and tissue localization by use of ultrashort pulses (ns, ps) and high-energy lasers which can result in tissue and cellular damage. This research investigates a method to immobilize sub-10 nm AuNPs (3.5 and 5 nm) onto a chemically modified thiol-rich surface of Qβ virus-like particles. These findings demonstrate that the multivalent display of sub-10 nm gold nanoparticles (AuNPs) caused a profound and disproportionate increase in photocavitation by upward of 5−7-fold and significantly lowered the laser fluency by 4-fold when compared to individual sub-10 nm AuNPs. Furthermore, computational modeling showed that the cooling time of QβAuNP scaffolds is significantly extended than that of individual AuNPs, proving greater control of laser fluency and nanobubble generation as seen in the experimental data. Ultimately, these findings showed how QβAuNP composites are more effective at nanobubble generation than current methods of plasmonic nanoparticle cavitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.