Auristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs. In addition, auristatin cocrystal structures with tubulin are being presented that allow for the detailed examination of their binding modes. A surprising finding is that all analyzed analogues have a cis-configuration at the Val-Dil amide bond in their functionally relevant tubulin bound state, whereas in solution this bond is exclusively in the trans-configuration. This remarkable observation shines light onto the preferred binding mode of auristatins and serves as a valuable tool for structure-based drug design.
The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.
In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.
DNA targeting drugs represent one of cornerstones of anti-cancer therapy for both hematologic and solid tumor indications. Low potency anti-DNA compounds (e.g. platins, anthracyclines) are included in many standard-of-care (SOC) regimens, however their modest activity and overall toxicity profiles limit their therapeutic potential. To increase the therapeutic window for DNA-damaging agents, high potency anti-DNA compounds with enhanced anti-tumor activity have been delivered to tumors as payloads of targeting modalities such as antibody-drug conjugates (ADCs). Herein, we describe the development of a novel DNA-damaging compound comprised of a dimeric structure of cyclopropylpyrrolo[e]indolones (CPIs) that was designed to alkylate DNA and generate toxic interstrand crosslinks (ICLs). In response to the CPI-induced formation of ICLs, CPI treatment of cells primarily activates the Fancomia anemia DNA damage response pathway, whereas other successful DNA-damaging ADC payloads such as calicheamicin activate double-strand break response pathways. CPI shows ~860-fold greater potency than calicheamicin in a panel of cell lines derived from a broad spectrum of tumor indications. Importantly, this new CPI payload retains potent activity in calicheamicin- and SOC-resistant tumor models (including overcoming overexpression of drug efflux pumps). When evaluated as payloads on anti-CD33 targeting ADCs, the CPI conjugate showed dramatically improved efficacy over the corresponding calicheamicin conjugates in MDR+ tumor models. As a site-specific conjugate, the CPI ADC shows enhanced in vivo stability and possesses a wider therapeutic window than the corresponding conventional calicheamicin conjugate and other leading DNA-damaging conjugates on the CD33 platform.
Citation Format: Jennifer Kahler, Maureen Dougher, Jane Xu, Matthew Doroski, Andreas Maderna, Russell Dushin, Stephane Thibault, Mauricio Leal, Madan Katragadda, Christopher J. O'Donnell, Matthew Sung, Puja Sapra. The development of CPI as a novel, next-generation DNA-targeting payload for ADCs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3095. doi:10.1158/1538-7445.AM2017-3095
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.