Spatial thinning of species occurrence records can help address problems associated with spatial sampling biases. Ideally, thinning removes the fewest records necessary to substantially reduce the effects of sampling bias, while simultaneously retaining the greatest amount of useful information. Spatial thinning can be done manually; however, this is prohibitively time consuming for large datasets. Using a randomization approach, the ‘thin’ function in the spThin R package returns a dataset with the maximum number of records for a given thinning distance, when run for sufficient iterations. We here provide a worked example for the Caribbean spiny pocket mouse, where the results obtained match those of manual thinning.
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.
There is an urgent need to develop e ective vulnerability assessments for evaluating the conservation status of species in a changing climate 1 . Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change 2-5 based on the expectation that established assessments such as the IUCN Red List 6 need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened 7-9 , no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally di erent from other threats in terms of assessing extinction risks.Attempts to quantify the threat that climate change poses to species' survival commonly infer extinction risk from changes in the area of climatically suitable habitat (the bioclimate envelope) 10,11 , but this approach ignores important aspects of species' biology such as population dynamics, vital rates and dispersal 12-16 , leading to high uncertainty 1,17 . To address this challenge, we coupled ecological niche models (ENMs) with demographic models [13][14][15][18][19][20] and expanded this approach by developing a generic life history (GLH) method. The coupled modelling approach estimates extinction risk as the probability of abundance falling to zero by the year 2100, rather than as the proportion of species committed to extinction due to contraction of bioclimate envelopes 10 (Methods).By matching ENMs for 36 amphibian and reptile species endemic to the US with corresponding GLH models (Supplementary Table 1), we estimate mean extinction risk by 2100 to be 28 ± 7% under a high CO 2 concentration Reference climate scenario 21 and 23 ± 7% under a Policy climate scenario that assumes substantive intervention 22 (Methods). In contrast, extinction risk is estimated by the same models to be <1% without climate change, showing that the methods are not biased towards predicting high risks. The contrast between predicted extinction risk with and without climate change suggests that climate change will cause a pronounced increase in extinction risk for these taxonomic groups over the coming century. Contrary to other stud...
Species introductions of anthropogenic origins are a major aspect of rapid ecological change globally. Research on biological invasions has generated a large literature on many different aspects of this phenomenon. Here, we describe and categorize some aspects of this literature, to better understand what has been studied and what we know, mapping well-studied areas and important gaps. To do so, we employ the techniques of systematic reviewing widely adopted in other scientific disciplines, to further the use of approaches in reviewing the literature that are as scientific, repeatable, and transparent as those employed in a primary study. We identified 2398 relevant studies in a field synopsis of the biological invasions literature. A majority of these studies (58%) were concerned with hypotheses for causes of biological invasions, while studies on impacts of invasions were the next most common (32% of the publications). We examined 1537 papers in greater detail in a systematic review. Superior competitive abilities of invaders, environmental disturbance, and invaded community species richness were the most common hypotheses examined. Most studies examined only a single hypothesis. Almost half of the papers were field observational studies. Studies of terrestrial invasions dominate the literature, with most of these concerning plant invasions. The focus of the literature overall is uneven, with important gaps in areas of theoretical and practical importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.