The skin conductance response (SCR) is increasingly being used as a measure of sympathetic activation concurrent with neuroscience measurements. We present a method of automated analysis of SCR data in the contexts of event-related cognitive tasks and nonspecific responding to complex stimuli. The primary goal of the method is to accurately measure the classical trough-to-peak amplitude of SCR in a fashion closely matching manual scoring. To validate the effectiveness of the method in event-related paradigms, three archived datasets were analyzed by two manual raters, the fully-automated method (Autonomate), and three alternative software packages. Further, the ability of the method to score non-specific responses to complex stimuli was validated against manual scoring. Results indicate high concordance between fully-automated and computer-assisted manual scoring methods. Given that manual scoring is error prone, subject to bias, and time consuming, the automated method may increase efficiency and accuracy of SCR data analysis.
The extinction of conditioned fear is known to be context-specific and is often considered more contextually bound than the fear memory itself (Bouton, 2004). Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context-specificity of a cued fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context-specificity of cued fear conditioning using full immersion 3-D virtual reality (VR). During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs), one of which was paired with electrical wrist stimulation. During a 24-h delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human clinical disorders.
Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data.In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment1. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses.In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects 2 . Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.