Calibrated microwave power and phase measurements are presented for the first recirculating planar magnetron prototype consisting of two coupled six-cavity 1-GHz planar cavity arrays. The results are presented for a solid cathode and two mode-control cathodes (MCCs) with aluminum or velvet electron emitters. The measurements were conducted using a prototype coaxial microwave power extraction scheme. The experimental operating parameters included: pulsed cathode voltages between −250 and −300 kV, voltage pulselengths of 200-600 µs, axial magnetic fields of 0.1-0.32 T, and entrance currents of 1-10 kA. The results showed improved oscillator frequency locking for the MCCs and increases in power and efficiency using the velvet electron emitter. Index Terms-Cavity magnetron, frequency locking, high-power microwaves (HPMs), recirculating planar magnetron (RPM), vacuum electronics.
We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangential dc electric field and external gases on multipactor susceptibility are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.