Advancements in robotic technology are making it increasingly possible to integrate robots into the human workspace in order to improve productivity and decrease worker strain resulting from the performance of repetitive, arduous physical tasks. While new computational methods have significantly enhanced the ability of people and robots to work flexibly together, there has been little study of the ways in which human factors influence the design of these computational techniques. In particular, collaboration with robots presents unique challenges related to the preservation of human situational awareness and the optimization of workload allocation for human teammates while respecting their workflow preferences. We conducted a series of human subject experiments to investigate these human factors, and provide design guidelines for the development of intelligent collaborative robots based on our results.
Abstract-New uses of robotics in traditionally manual manufacturing processes require the careful choreography of human and robotic agents to support safe and efficient coordinated work. Tasks must be allocated among agents and scheduled to meet temporal deadlines and spatial restrictions on agent proximity. These systems must also be capable of replanning onthe-fly to adapt to disturbances in the schedule and to respond to people working in close physical proximity. In this paper, we present a centralized algorithm, named Tercio, that handles tightly intercoupled temporal and spatial constraints and scales to larger problem sizes than prior art. Our key innovation is a fast, satisficing multi-agent task sequencer that is inspired by real-time processor scheduling techniques but is adapted to leverage hierarchical problem structure. We use this fast task sequencer in conjunction with a MILP solver, and show that we are able to generate near-optimal task assignments and schedules for up to 10 agents and 500 tasks in less than 20 seconds on average. Finally, we demonstrate the algorithm in a multi-robot hardware testbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.