In this paper, we present a Model-Free Stochastic Inverse Optimal Control (IOC) algorithm for the discrete-time infinite-horizon stochastic linear quadratic regulator (LQR). Our proposed algorithm exploits the richness of the available system trajectories to recover the control gain K and cost function parameters (Q, R) in a low (space, sample, and computational) complexity manner. By leveraging insights on the stochastic LQR, we guarantee well-posedness of the Model-Free Stochastic IOC LQR via satisfaction of the Certainty Equivalence optimality conditions. The exact solution of the control gain K is recovered via a deterministic, low complexity Least Squares approach. Using K, we solve a completely model-free noniterative SemiDefinite Programming (SDP) problem to obtain a unique (up to a scalar ambiguity) (Q, R), in which optimality and feasibility are jointly ensured. Via derivation of the sample complexity bounds, we show that the non-asymptotic performance of the Model-Free Stochastic IOC LQR can be characterized by the signal-to-noise (SNR) ratio of the finite set of system state and input signals. We present a model-based version of the algorithm for the special case where (A, B) is available, and we, further, provide the extension to the Stochastic Model-Free IOC linear quadratic tracking (LQT) case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.