Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe = 1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe 1, consistent with linear expectation. For ηe < 1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe > 1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe = d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.
ABSTRACT. A central goal of most sustainable agriculture programs is to encourage growers to adopt practices that jointly provide economic, environmental, and social benefits. Using surveys of outreach professionals and wine grape growers, we quantify the perceived costs and benefits of sustainable viticulture practices recommended by sustainability outreach and certification programs. We argue that the mix of environmental benefits, economic benefits, and economic costs determine whether or not a particular practice involves decisions about innovation or cooperation. Decision making is also affected by the overall level of knowledge regarding different practices, and we show that knowledge gaps are an increasing function of cost and a decreasing function of benefits. How different practices are related to innovation and cooperation has important implications for the design of sustainability outreach programs. Cooperation, innovation, and knowledge gaps are issues that are likely to be relevant for the resilience and sustainability of many different types of social-ecological systems.
Social learning, learning from others, has value in extending knowledge about farm management through networks of growers. Exactly how much value depends on the structure of the networks. We employed social network analysis to study knowledge networks and social learning in three American Viticulture Areas in California: Central Coast, Lodi and Napa Valley. In a survey, growers confirmed that experiential and social learning are more useful for accessing information about farm management than formal learning. UC Agriculture and Natural Resources Cooperative Extension (UCCE) was found to be well positioned to access and spread knowledge through the grower networks but a bottleneck exists -many knowledge-sharing relationships and relatively few staff. We also found that grower participation in traditional outreach activities, e.g., meetings and demonstrations, is a strong predictor of their number of knowledgesharing relationships, so UCCE and other agricultural support organizations have an important role to play in strengthening networks. Several network-smart extension strategies might help alleviate the bottleneck and rewire networks to more efficiently connect those with questions to those with solutions.A griculture is a knowledgeintensive industry. Therefore, developing new and innovative extension strategies is among the most pressing challenges facing contemporary agriculture (Pretty et al. 2010). Studies have highlighted the value of social learning (people learning from one another), and social learning is considered a critical pathway for extending knowledge about farm management (Pretty and Chambers 2003;Roling and Wagemakers 1998;Warner 2007a). Compared to when they were established in the late 19th century, today's extension systems are more complex, dynamic and networked, and the work of extension may benefit by capitalizing on the network structure of the modern knowledge system (Lubell et al. 2014).Elsewhere, we have shown a positive relationship between growers' number of knowledge-sharing relationships and their adoption of beneficial management practices (Hoffman 2013). However, before Cooperative Extension and other agricultural support organizations (e.g., commissions, marketing orders, voluntary grower associations) can develop extension strategies that harness the natural process of social learning, we must first understand the structure of these knowledge networks and identify leverage points that can rewire the network to connect those with solutions to those with questions.The objective of our research was to find a scientific basis on which networksmart extension strategies can be based. We employed social network analysis (Wasserman and Faust 1994) to study knowledge networks in three American Viticulture Areas (AVAs) in California: Central Coast, Lodi and Napa Valley. We compared the usefulness of social learning to that of two other learning pathways: experiential learning and formal learning. The three knowledge networks in the AVAs were modeled to identify growers and outreach pro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.