Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, are imposed through detailed analyses of whole-body ex-vivo CT images (1 mm resolution) and spongiosa-specific ex-vivo microCT images (30 μm resolution), respectively, taken from a 40-year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP’s change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10-μm endosteal layer covering the trabecular and cortical surfaces, to a 50-μm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal-averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.
OBJECTIVES: Exposure to ionizing radiation remains a hazard for patients and healthcare providers. We evaluated the utility of an artificial intelligence (AI)-enabled fluoroscopy system to minimize radiation exposure during image-guided endoscopic procedures. METHODS: We conducted a prospective study of 100 consecutive patients who underwent fluoroscopy-guided endoscopic procedures. Patients underwent interventions using either conventional or AI-equipped fluoroscopy system that uses ultrafast collimation to limit radiation exposure to the region of interest. The main outcome measure was to compare radiation exposure with patients, which was measured by dose area product. Secondary outcome was radiation scatter to endoscopy personnel measured using dosimeter. RESULTS: Of 100 patients who underwent procedures using traditional (n = 50) or AI-enabled (n = 50) fluoroscopy systems, there was no significant difference in demographics, body mass index, procedural type, and procedural or fluoroscopy time between the conventional and the AI-enabled fluoroscopy systems. Radiation exposure to patients was lower (median dose area product 2,178 vs 5,708 mGym2, P = 0.001) and scatter effect to endoscopy personnel was less (total deep dose equivalent 0.28 vs 0.69 mSv; difference of 59.4%) for AI-enabled fluoroscopy as compared to conventional system. On multivariate linear regression analysis, after adjusting for patient characteristics, procedural/fluoroscopy duration, and type of fluoroscopy system, only AI-equipped fluoroscopy system (coefficient 3,331.9 [95% confidence interval: 1,926.8–4,737.1, P < 0.001) and fluoroscopy duration (coefficient 813.2 [95% confidence interval: 640.5–985.9], P < 0.001) were associated with radiation exposure. DISCUSSION: The AI-enabled fluoroscopy system significantly reduces radiation exposure to patients and scatter effect to endoscopy personnel (see Graphical abstract, Supplementary Digital Content, http://links.lww.com/AJG/B461).
Physics testing necessary for program accreditation is rigorously defined by the ACR. This testing is easily applied to most conventional SPECT systems based on gamma camera technology. The inSPira HD is a dedicated head SPECT system based on a rotating dual clamshell design that acquires data in a dual-spiral geometry. The unique geometry and configuration force alterations of the standard ACR physics testing protocol. Various tests, such as intrinsic planar uniformity and/or resolution, do not apply. The Data Spectrum Deluxe Phantom used for conventional SPECT testing cannot fit in the inSPira HD scanner bore, making (currently) unapproved use of the Small Deluxe SPECT Phantom necessary. Matrix size, collimator type, scanning time, reconstruction method, and attenuation correction were all varied from the typically prescribed ACR instructions. Visible spheres, sphere contrast, visible rod groups, uniformity, and root mean square (RMS) noise were measured. The acquired SPECT images surpassed the minimum ACR requirements for both spatial resolution (9.5 mm spheres resolved) and contrast (6.4 mm rod groups resolved). Sphere contrast was generally high. Integral uniformity was 4% and RMS noise was 1.7%. Noise appeared more correlated than in images from a conventional SPECT scanner. Attenuation-corrected images produced from direct CT scanning of the phantom and a manufacturer supplied model of the phantom demonstrated negligible differences.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.