The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the firstoccurring instability at incidence angles smaller than 12 • and greater than 26 • , with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasiperiodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12 • as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45 • . A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.
(1) Intense EX induces a similar increase in Pl-cortisone (~90 %) and corticosterone (~200 %) in the AM and PM, whereas exercise increases CBG in the PM, but not in the AM; (2) vigorous exercise increases Sa-cortisone; (3) Sa-cortisone and cortisol are equally strongly correlated to Pl-cortisol, suggesting a significant role for Sa-cortisone as a novel marker of free cortisol during exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.