The X-ray structure of the ternary complex of a calcineurin A fragment, calcineurin B, FKBP12, and the immunosuppressant drug FK506 (also known as tacrolimus) has been determined at 2.5 A resolution, providing a description of how FK506 functions at the atomic level. In the structure, the FKBP12-FK506 binary complex does not contact the phosphatase active site on calcineurin A that is more than 10 A removed. Instead, FKBP12-FK506 is so positioned that it can inhibit the dephosphorylation of its macromolecular substrates by physically hindering their approach to the active site. The ternary complex described here represents the three-dimensional structure of a Ser/Thr protein phosphatase and provides a structural basis for understanding calcineurin inhibition by FKBP12-FK506.
Our results reveal how pyridinylimidazole compounds are potent and selective inhibitors of p38 MAP kinase but not other MAP kinases. It should now be possible to design other specific inhibitors of activated p38 MAP kinase using the structure of the nonphosphorylated enzyme.
Interactions mediated by phosphoryl-Thr183 induce structural changes that direct the domains and active-site residues of P38gamma into a conformation consistent with catalytic activity. The conformation of the phosphorylation loop is likely to be similar in all activated MAP kinases, but not all activated MAP kinases form dimers.
Aberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting. Here we report the discovery of BVD-523 (ulixertinib), a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and ERK1/2 selectivity. In vitro BVD-523 treatment resulted in reduced proliferation and enhanced caspase activity in sensitive cells. Interestingly, BVD-523 inhibited phosphorylation of target substrates despite increased phosphorylation of ERK1/2. In in vivo xenograft studies, BVD-523 showed dose-dependent growth inhibition and tumor regression. BVD-523 yielded synergistic antiproliferative effects in a BRAF V600E -mutant melanoma cell line xenograft model when used in combination with BRAF inhibition. Antitumor activity was also demonstrated in in vitro and in vivo models of acquired resistance to singleagent and combination BRAF/MEK-targeted therapy. On the basis of these promising results, these studies demonstrate BVD-523 holds promise as a treatment for ERK-dependent cancers, including those whose tumors have acquired resistance to other treatments targeting upstream nodes of the MAPK pathway. Assessment of BVD-523 in clinical trials is underway
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.