The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.
Bromodomains are epigenetic readers that are recruited to acetyllysine residues in histone tails. Recent studies have identified non-acetyl acyllysine modifications, raising the possibility that these might be read by bromodomains. Profiling the nearly complete human bromodomain family revealed that while most human bromodomains bind only the shorter acetyl and propionyl marks, the bromodomains of BRD9, CECR2, and the second bromodomain of TAF1 also recognize the longer butyryl mark. In addition, the TAF1 second bromodomain is capable of binding crotonyl marks. None of the human bromodomains tested binds succinyl marks. We characterized structurally and biochemically the binding to different acyl groups, identifying bromodomain residues and structural attributes that contribute to specificity. These studies demonstrate a surprising degree of plasticity in some human bromodomains but no single factor controlling specificity across the family. The identification of candidate butyryl- and crotonyllysine readers supports the idea that these marks could have specific physiological functions.
The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.
Interactions mediated by phosphoryl-Thr183 induce structural changes that direct the domains and active-site residues of P38gamma into a conformation consistent with catalytic activity. The conformation of the phosphorylation loop is likely to be similar in all activated MAP kinases, but not all activated MAP kinases form dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.