A retrospective survey of 93,775 samples testing positive in Candida species-specific PCR tests performed on cervicovaginal swabs over a 4-year period demonstrated consistent yearly distributions of Candida albicans (89%), C. glabrata (7.9%), C. parapsilosis (1.7%), and C. tropicalis (1.4%). However, the species distributions among different age groups revealed increases in the percentages of non-albicans species with increases in age.Vulvovaginal candidiasis (VVC) is a common fungal infection that affects healthy women of all ages. At least 75% of women will develop one or more infections once during their lifetime, with 5 to 8% of those individuals developing recurrent infections (5, 7). Current literature examining the species distribution of Candida isolates involved in VVC is limited; however, several important observations have been made. For example, one study shows that Candida albicans accounts for 70 to 90% of all VVC cases, with a recent emergence of nonalbicans species (10). The rise in VVC infections, more specifically in those caused by non-albicans species, could be due to several factors, ranging from an increase in over-the-counter antifungal use to an increase in high-risk patient populations (i.e., diabetics and menopausal women). Candida glabrata is the primary non-albicans species emerging in VVC, accounting for up to 14% of infections in immune-competent women (9, 10).In addition to an increase in non-albicans species overall, it is becoming clear that certain patient populations may experience higher risks of infection from these non-albicans species, often leading to limited treatment options. Interestingly, in a few small studies, C. glabrata was found to be the primary species isolated from diabetic (61.3%) and elderly (51.2%) patients with VVC (2, 4, 6, 11). Often, these non-albicans species are associated with elevated MIC levels for the azoles, the most commonly prescribed class of antifungal drugs. It has been well documented that C. glabrata demonstrates both intrinsically low susceptibility to the azoles and the ability to develop frank resistance (8,12,13,14,15,16). Moreover, a recent increase in the trailing phenotype, with low-level resistance to the azoles, has been observed for the Candida tropicalis isolates (1, 3). This highlights the importance of identifying Candida species within clinical samples in order to provide physicians with information concerning the proper treatment for their patients.