(1c), were prepared and the electronic structure of the oneelectron oxidized species [1a-c] + were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO2 2+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations
The new N,C-chelate boron compounds B(2-phenylazolyl)Mes2 [Mes = mesityl; azolyl = benzothiazolyl (1a), 4-methylthiazolyl (2a), benzoxazolyl (3a), benzimidazolyl (4a)] undergo an unprecedented multistructural transformation upon light irradiation or heating, sequentially producing isomers b, c, d, and e. The dark isomers b generated by photoisomerization of a undergo a rare thermal intramolecular H-atom transfer (HAT), reducing the azole ring and generating new isomers c, which are further transformed into isomers d. Remarkably, isomers d can be converted to their diastereomers e quantitatively by heating, and e can be converted back to d by irradiation at 300 nm. The structures of isomers 1d and 1e were established by X-ray diffraction. The unusual HAT reactivity can be attributed to the geometry of the highly energetic isomers b and the relatively low aromaticity of the azole rings. The boryl unit plays a key role in the reversible interconversion of d and e, as shown by mechanistic pathways established through DFT and TD-DFT calculations.
The influence of turbulence on the orientation state of a dilute density matched suspension of stiff fibres at high Reynolds number in a planar contraction is investigated. High-speed imaging and laser-Doppler velocimetry techniques are used to quantify fibre orientation distribution and turbulent characteristics. A nearly homogeneous isotropic grid-generated turbulent flow is introduced at the contraction inlet. Flow Reynolds number and inlet turbulent characteristics are varied in order to determine their effects on orientation distribution. The orientation anisotropy is shown to be accurately modelled by a Fokker-Planck type equation. Results show that rotational diffusion is highly influenced by inlet turbulent characteristics and decays exponentially with convergence ratio. Furthermore, the effect of turbulent energy production in the contraction is shown to be negligible. Also, the results show that the flow Reynolds number has negligible effect on the development of orientation anisotropy, and the influence of turbulence on fibre rotation is negligible for rotational Péclet number $\gt$10.
A sub-millimeter sized optical scanner driven by electro-thermal actuation is presented. The scanner is composed of a single-mode optical fiber (SMF) with a cantilevered section at its distal tip. The fiber cantilever is electrothermally actuated near its base in a single direction and excited at resonance to obtain large deflections at the tip of the fiber. Two-dimensional imaging of an object is demonstrated by simultaneously rotating the object while scanning across its diameter. Illumination light from the optical core of the fiber cantilever is projected through a lens onto the object. Reflected light is collected by the same lens and projected onto a photodetector. An image of the object is reconstructed by interpolation of the detected signal. The resolution of the system was measured to be 16μm by imaging a resolution target. The electro-thermal fiber actuator may provide a new technique for scanning in sub-millimeter sized forward-viewing endoscopic catheters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.