In seven strains of cultured normal human osteoblast-like cells, a mean of 1615 molecules of tritium-labeled 17 beta-estradiol per cell nucleus could be bound to specific nuclear sites. The nuclear binding of the labeled steroid was temperature-dependent, steroid-specific, saturable, and cell type-specific. These are characteristics of biologically active estrogen receptors. Pretreatment with 10 nanomolar estradiol in vitro increased the specific nuclear binding of progesterone in four of six cell strains, indicating an induction of functional progesterone receptors. RNA blot analysis demonstrated the presence of messenger RNA for the human estrogen receptor. The data suggest that estrogen acts directly on human bone cells through a classical estrogen receptor-mediated mechanism.
Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.
HighlightsOutbreak potential is greater than expected if non-vaccination is clustered.Vaccination targets are insufficient to achieve herd immunity in many settings.Impact of susceptibility clustering highest in countries near disease elimination.Countries with high vaccination should shift focus to local vaccination targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.