We have constructed a phage-displayed library based on the human fibronectin tenth type III domain (FN3) scaffold by randomizing residues in its FG and BC loops. Screening against the SH3 domain of human c-Src yielded six different clones. Five of these contained proline-rich sequences in their FG loop that resembled class I (i.e., +xxPxxP) peptide ligands for the Src SH3 domain. The sixth clone lacked the proline-rich sequence and showed particularly high binding specificity to the Src SH3 domain among various SH3 domains tested. Competitive binding, loop replacement, and NMR perturbation experiments were conducted to analyze the recognition properties of selected binders. The strongest binder was able to pull down full-length c-Src from murine fibroblast cell extracts, further demonstrating the potential of this scaffold for use as an antibody mimetic.
Treatment of high-risk neuroblastoma typically incorporates multi-agent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in approximately 8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small cell lung cancer and anaplastic large cell lymphoma where wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 months of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1, and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance.
RATIONALE: The Runx1 transcription factor decreases GATA3 and IL-4 expression and Th2 skewing and promotes Th1/Th17/Tregulatory (Treg) cell development and function. We hypothesized that patients with germline RUNX1 deficiency would be predisposed to allergic and/or autoimmune disease. METHODS: Thirty-one patients (17 female; median age 42 years, range 2-74) with confirmed RUNX1 mutations were evaluated. Peripheral blood was obtained to evaluate hematologic variables, total and allergen specific IgE, and lymphocyte immune phenotypes. RESULTS: 29/31 patients had a positive allergic history; 21 had allergic rhinitis, 16 allergic conjunctivitis, and 20 mild-moderate eczema controlled with topical glucocorticoids and emollients. Seven patients had doctordiagnosed asthma with 1 patient receiving mepolizumab for eosinophilic asthma. Four reported oral allergy syndrome. Two patients had IgEmediated food allergy to flounder and egg, respectively, and two had biopsy-proven eosinophilic esophagitis. Five patients reported autoimmune disorders including mixed connective tissue disease, Hashimoto's thyroiditis, Sjogren's syndrome, alopecia universalis and systemic Juvenile idiopathic arthritis. Median total IgE and eosinophil counts were within the normal range (73.35 IU/mL; range 16 -635 IU/mL and 215/mcL; range 0-1000/mcL, respectively). Median CD4 and CD8 T cells counts were within the normal range, although patients exhibited an increased frequency of memory CD4+ T cells, decreased CD4:CD8 ratios, and decreased Tregs in peripheral blood when compared to healthy controls. CONCLUSIONS: Patients with germline RUNX1 deficiency exhibit an increased prevalence of atopic and autoimmune disorders, demonstrating an important role for Runx1 in tolerance development in humans.
Familial platelet disorder with associated myeloid malignancies (FPDMM) is a rare autosomal dominant disease caused by germline RUNX1 mutations. FPDMM patients have defective megakaryocytic development, low platelet counts, prolonged bleeding times, and a life-long risk (20-50%) of developing hematological malignancies. FPDMM is a rare genetic disease in need of comprehensive clinical and genomic studies. In early 2019 we launched a longitudinal natural history study of patients with FPDMM at the NIH Clinical Center and by May 2021 we have enrolled 98 patients and 100 family controls from 55 unrelated families. Genomic data have been generated from 56 patients in 24 families, including whole exome sequencing (WES), RNA-seq, and single-nucleotide polymorphism (SNP) array. We have identified 21 different germline RUNX1 variants among these 24 families, which include lost-of-function mutations throughout the RUNX1 gene, but pathogenic/likely pathogenic missense mutations are mostly clustered in the runt-homology domain (RHD). As an important form of RUNX1 germline mutations, five splice site variants located between exon 4-5 and exon 5-6 were identified in 6 families, which led to the productions of novel transcript forms that are predicted to generate truncated RUNX1 proteins. Large deletions affecting the RUNX1 gene are also common, ranging from 50 Kb to 1.5Mb, which were detected in 8 of the 55 enrolled families. Besides RUNX1, copy number variation (CNV) analysis from both SNP array and WES showed limited CNV events in non-malignant FPDMM patients. In addition, fusion gene analysis did not detect any in-frame fusion gene in these patients, indicating a relatively stable chromosome status in FPDMM patients. Somatic mutation landscape shows that the overall mutation burden in non-malignant FPDMM patients is lower than AML or other cancer types. However, in 13 of the 44 non-malignant patients (30%), somatic mutations were detected in at least one of the reported clonal hematopoiesis of indeterminate potential (CHIP) genes, significantly higher than the general population (4.3%). Moreover, 85% of our patients who carried CHIP mutations are under 65 years of age; in the general population, only 10% of people above 65 years of age and 1% of people under 50 were reported to carry CHIP mutations. Among mutated genes related to clonal hematopoiesis, BCOR is the most frequently mutated gene (5/44) in our FPDMM cohort, which is not a common CHIP gene among the general population. Mutations in known CHIP genes including SF3B1, TET2, and DNMT3A were also found in more than one patient. In addition, sequencing of 5 patients who already developed myeloid malignancies detected somatic mutations in BCOR, TET2, NRAS, KRAS, CTCF, KMT2D, PHF6, and SUZ12. Besides reported CHIP genes or leukemia driver genes, 3 unrelated patients carried somatic mutations in the NFE2 gene, which is essential for regulating erythroid and megakaryocytic maturation and differentiation. Two of the NFE2 mutations are nonsense mutations, and the other is a missense mutation in the important functional domain. NFE2 somatic mutations may play important roles in developing malignancy because 2 of the 3 patients already developed myeloid malignancies. For multiple patients in our cohort, we have sequenced their DNA on multiple timepoints. We have observed patients with expanding clones carrying FKBP8, BCOR or FOXP1 mutations. We have also observed a patient with relatively stable clone(s) with somatic BCOR, DNMT3A, and RUNX1T1, who have been sampled over more than four years. We will follow these somatic mutations through sequencing longitudinally and correlate the findings with clinical observations to see if the dynamic changes of CHIP clones harboring the mutations give rise to MDS or leukemia. In summary, the genomic analysis of our new natural history study demonstrated diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in FPDMM patients. These findings indicate that monitoring the dynamic changes of these CHIP mutations prospectively will benefit patients' clinical management and help us understand possible mechanisms for the progression from FPDMM to myeloid malignancies. Disclosures No relevant conflicts of interest to declare.
Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancies (FPDMM), which is characterized by thrombocytopenia and a life-long risk (35-45%) of hematological malignancies. We recently launched a longitudinal natural history study for patients with FPDMM at the NIH Clinical Center. Among 29 families with research genomic data, 28 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 24 of 54 (44.4%) non-malignant patients, somatic mutations were detected in at least one of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 7 other CHIP or AML driver genes (DNMT3A, TET2, NRAS, SETBP1, SF3B1, KMT2C, and LRP1B) were also found in more than one non-malignant patient. Moreover, three unrelated patients (one with myeloid malignancy) carried somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in elderly patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring dynamic changes of somatic mutations prospectively will benefit patients' clinical management and reveal mechanisms for progression to myeloid malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.