Abstract. While several researchers have applied case-based reasoning techniques to games, only Ponsen and Spronck (2004) have addressed the challenging problem of learning to win real-time games. Focusing on WARGUS, they report good results for a genetic algorithm that searches in plan space, and for a weighting algorithm (dynamic scripting) that biases subplan retrieval. However, both approaches assume a static opponent, and were not designed to transfer their learned knowledge to opponents with substantially different strategies. We introduce a plan retrieval algorithm that, by using three key sources of domain knowledge, removes the assumption of a static opponent. Our experiments show that its implementation in the Case-based Tactician (CAT) significantly outperforms the best among a set of genetically evolved plans when tested against random WARGUS opponents. CAT communicates with WARGUS through TIELT, a testbed for integrating and evaluating decision systems with simulators. This is the first application of TIELT. We describe this application, our lessons learned, and our motivations for future work.
To operate autonomously in complex environments, an agent must monitor its environment and determine how to respond to new situations. To be considered intelligent, an agent should select actions in pursuit of its goals, and adapt accordingly when its goals need revision. However, most agents assume that their goals are given to them; they cannot recognize when their goals should change. Thus, they have difficulty coping with the complex environments of strategy simulations that are continuous, partially observable, dynamic, and open with respect to new objects. To increase intelligent agent autonomy, we are investigating a conceptual model for goal reasoning called Goal‐Driven Autonomy (GDA), which allows agents to generate and reason about their goals in response to environment changes. Our hypothesis is that GDA enables an agent to respond more effectively to unexpected events in complex environments. We instantiate the GDA model in ARTUE (Autonomous Response to Unexpected Events), a domain‐independent autonomous agent. We evaluate ARTUE on scenarios from two complex strategy simulations, and report on its comparative benefits and limitations. By employing goal reasoning, ARTUE outperforms an off‐line planner and a discrepancy‐based replanner on scenarios requiring reasoning about unobserved objects and facts and on scenarios presenting opportunities outside the scope of its current mission.
Agents with incomplete environment models are likely to be surprised, and this represents an opportunity to learn. We investigate approaches for situated agents to detect surprises, discriminate among different forms of surprise, and hypothesize new models for the unknown events that surprised them. We instantiate these approaches in a new goal reasoning agent (named FoolMeTwice), investigate its performance in simulation studies, and report that it produces plans with significantly reduced execution cost in comparison to not learning models for surprising events.
Case-based reasoning (CBR) is a problem-solving process in which a new problem is solved by retrieving a similar situation and reusing its solution. Transfer learning occurs when, after gaining experience from learning how to solve source problems, the same learner exploits this experience to improve performance and/or learning on target problems. In transfer learning, the differences between the source and target problems characterize the transfer distance. CBR can support transfer learning methods in multiple ways. We illustrate how CBR and transfer learning interact and characterize three approaches for using CBR in transfer learning: (1) as a transfer learning method, (2) for problem learning, and (3) to transfer knowledge between sets of problems. We describe examples of these approaches from our own and related work and discuss applicable transfer distances for each. We close with conclusions and directions for future research applying CBR to transfer learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.