A cluster randomized controlled trial (C‐RCT) is common in educational intervention studies. Multilevel modelling (MLM) is a dominant analytic method to evaluate treatment effects in a C‐RCT. In most MLM applications intended to detect an interaction effect, a single interaction effect (called a conflated effect) is considered instead of level‐specific interaction effects in a multilevel design (called unconflated multilevel interaction effects), and the linear interaction effect is modelled. In this paper we present a generalized additive mixed model (GAMM) that allows an unconflated multilevel interaction to be estimated without assuming a prespecified form of the interaction. R code is provided to estimate the model parameters using maximum likelihood estimation and to visualize the nonlinear treatment‐by‐covariate interaction. The usefulness of the model is illustrated using instructional intervention data from a C‐RCT. Results of simulation studies showed that the GAMM outperformed an alternative approach to recover an unconflated logistic multilevel interaction. In addition, the parameter recovery of the GAMM was relatively satisfactory in multilevel designs found in educational intervention studies, except when the number of clusters, cluster sizes, and intraclass correlations were small. When modelling a linear multilevel treatment‐by‐covariate interaction in the presence of a nonlinear effect, biased estimates (such as overestimated standard errors and overestimated random effect variances) and incorrect predictions of the unconflated multilevel interaction were found.
Eye-tracking has emerged as a popular method for empirical studies of cognitive processes across multiple substantive research areas. Eye-tracking systems are capable of automatically generating fixation-location data over time at high temporal resolution. Often, the researcher obtains a binary measure of whether or not, at each point in time, the participant is fixating on a critical interest area or object in the real world or in a computerized display. Eye-tracking data are characterized by spatial-temporal correlations and random variability, driven by multiple fine-grained observations taken over small time intervals (e.g., every 10 ms). Ignoring these data complexities leads to biased inferences for the covariates of interest such as experimental condition effects. This article presents a novel application of a generalized additive logistic regression model for intensive binary time series eye-tracking data from a between-and within-subjects experimental design. The model is formulated as a generalized additive mixed model (GAMM) and implemented in the mgcv R package. The generalized additive logistic regression model was illustrated using an empirical data set aimed at understanding the accommodation of regional accents in spoken language processing. Accuracy of parameter estimates and the importance of modeling the spatial-temporal correlations in detecting the experimental condition effects were shown in conditions similar to our empirical data set via a simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.