Chemo-dynamical N-body simulations are an essential tool for understanding the formation and evolution of galaxies. As the number of observationally determined stellar abundances continues to climb, these simulations are able to provide new constraints on the early star formaton history and chemical evolution inside both the Milky Way and Local Group dwarf galaxies. Here, we aim to reproduce the low α-element scatter observed in metal-poor stars. We first demonstrate that as stellar particles inside simulations drop below a mass threshold, increases in the resolution produce an unacceptably large scatter as one particle is no longer a good approximation of an entire stellar population. This threshold occurs at around 10 3 M , a mass limit easily reached in current (and future) simulations. By simulating the Sextans and Fornax dwarf spheroidal galaxies we show that this increase in scatter at high resolutions arises from stochastic supernovae explosions. In order to reduce this scatter down to the observed value, we show the necessity of introducing a metal mixing scheme into particle-based simulations. The impact of the method used to inject the metals into the surrounding gas is also discussed. We finally summarise the best approach for accurately reproducing the scatter in simulations of both Local Group dwarf galaxies and in the Milky Way.
A recent survey of the Galaxy and M31 reveals that more than 90% of dwarf galaxies within 270 kpc of their host galaxy are deficient in HI gas. At such an extreme radius, the coronal halo gas is an order of magnitude too low to remove HI gas through ram-pressure stripping for any reasonable orbit distribution. However, all dwarfs are known to have an ancient stellar population ( 10 Gyr) from early epochs of vigorous star formation which, through heating of HI, could allow the hot halo to remove this gas. Our model looks at the evolution of these dwarf galaxies analytically as the host-galaxy dark matter halo and coronal halo gas builds up over cosmic time. The dwarf galaxies-treated as spherically symmetric, smooth distributions of dark matter and gas-experience early star formation, which sufficiently heats the gas allowing it to be removed easily through tidal stripping by the host galaxy, or ram-pressure stripping by a tenuous hot halo (n H = 3 × 10 −4 cm −3 at 50 kpc). This model of evolution is able to explain the observed radial distribution of gas-deficient and gas-rich dwarfs around the Galaxy and M31 if the dwarfs fell in at high redshifts (z ∼ 3-10).
The current velocity of the Smith Cloud indicates that it has undergone at least one passage of the Galactic disc. Using hydrodynamic simulations we examine the present day structure of the Smith Cloud. We find that a dark matter supported cloud is able to reproduce the observed present day neutral hydrogen mass, column density distribution and morphology. In this case the dark matter halo becomes elongated, owing to the tidal interaction with the Galactic disc. Clouds in models neglecting dark matter confinement are destroyed upon disc passage, unless the initial cloud mass is well in excess of what is observed today. We then determine integrated flux upper limits to the gamma-ray emission around such a hypothesised dark matter core in the Smith Cloud. No statistically significant core or extended gamma-ray emission are detected down to a 95% confidence level upper limit of 1.4 ×10 −10 ph cm −2 s −1 in the 1-300 GeV energy range. For the derived distance of 12.4 kpc, the Fermi upper limits set the first tentative constraints on the dark matter cross sections annihilating into τ + τ − and bb for a high-velocity cloud.
Our Galaxy is surrounded by a large family of dwarf galaxies of which the most massive are the Large and Small Magellanic Clouds (LMC and SMC). Recent evidence suggests that systems with the mass of the Local Group accrete galaxies in smaller groups rather than individually. If so, at least some of the Galaxy's dwarfs may have fallen in with the LMC and SMC, and were formed as part of the Magellanic system in the nearby universe. We use the latest measurements of the proper motions of the LMC and SMC and a multicomponent model of the Galactic potential to explore the evolution of these galaxy configurations under the assumption that the Magellanic system may once have contained a number of bound dwarf galaxies. We compare our results to the available kinematic data for the local dwarf galaxies, and examine whether this model can account for recently discovered stellar streams and the planar distribution of Milky Way satellites. We find that in situations where the LMC and SMC are bound to the Milky Way, the kinematics of Draco, Sculptor, Sextans, Ursa Minor and the Sagittarius Stream are consistent with having fallen in along with the Magellanic system. These dwarfs, if so associated, will likely have been close to the tidal radius of the LMC originally and are unlikely to have affected each other throughout the orbit. However there are clear cases, such as Carina and Leo I, that cannot be explained this way.
The Smith Cloud is a massive system of metal-poor neutral and ionized gas (M gas 2 × 10 6 M ⊙ ) that is presently moving at high velocity (V GSR ≈ 300 km s −1 ) with respect to the Galaxy at a distance of 12 kpc from the Sun. The kinematics of the cloud's cometary tail indicates that the gas is in the process of accretion onto the Galaxy, as first discussed by Lockman et al. (2008). Here, we re-investigate the cloud's orbit by considering the possibility that the cloud is confined by a dark matter halo. This is required for the cloud to survive its passage through the Galactic corona. We consider three possible models for the dark matter halo (NFW, Einasto, Burkert) including the effects of tidal disruption and ram-pressure stripping during the cloud's infall onto and passage through the Galactic disk. For the NFW and Einasto 1 dark-matter models, we are able to determine reasonable initial conditions for the Smith Cloud, although this is only marginally possible with the Burkert model. For all three models, the progenitor had an initial (gas+dark matter) mass that was an order of magnitude higher than inferred today. In agreement with Lockman et al., the cloud appears to have punched through the disk ≈ 70 Myr ago. For our most successful models, the baryon to dark matter ratio is fairly constant during an orbital period but drops by a factor of 2 − 5 after transiting the disk. The cloud appears to have only marginally survived its transit, and is unlikely to retain its integrity during the next transit ≈ 30 Myr from now. Subject headings:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.