While two terminal HfOX (x<2) memristor devices have been studied for ion transport and current evolution, there have been limited reports on the effect of the long-range thermal environment on their performance. In this work, amorphous-HfOX based memristor devices on two different substrates, thin SiO 2 (280 nm)/Si and glass, with different thermal conductivities in the range from 1.2 to 138 W/m-K were fabricated. Devices on glass substrates exhibit lower reset voltage, wider memory window and, in turn, a higher performance window. In addition, the devices on glass show better endurance than the devices on the SiO 2 /Si substrate. These devices also show nonvolatile multi-level resistances at relatively low operating voltages which is critical for neuromorphic computing applications. A Multiphysics COMSOL computational model is presented that describes the transport of heat, ions and electrons in these structures. The combined experimental and COMSOL simulation results indicate that the long-range thermal environment can have a significant impact on the operation of HfOx-based memristors and that substrates with low thermal conductivity can enhance switching performance.
Neuromorphic computation using nanoscale adaptive oxide devices or memristors is a very promising alternative to the conventional digital computing framework. Oxides of transition metals, such as hafnium (HfOx), have been proven to be excellent candidate materials for these devices, because they show non-volatile memory and analog switching characteristics. This work presents a comprehensive study of the transport phenomena in HfOx based memristors and involves the development of a fully coupled electrothermal and mass transport model that is validated with electrical and thermal metrology experiments. The fundamental transport mechanisms in HfOx devices were analyzed together with the local and temporal variation of voltage, current, and temperature. The effect of thermal conductivity of substrate materials on the filament temperature, voltage ramp rate, and set/reset characteristics was investigated. These analyses provide insight into the switching mechanisms of these oxides and allow for the prediction of the effect of device architecture on switching behavior.
Heterostructures of two-dimensional transition metal dichalcogenides (TMDs) can offer a plethora of opportunities in condensed matter physics, materials science, and device engineering. However, despite state-of-the-art demonstrations, most current methods lack enough degrees of freedom for the synthesis of heterostructures with engineerable properties. Here, we demonstrate that combining a postgrowth chalcogen-swapping procedure with the standard lithography enables the realization of lateral TMD heterostructures with controllable dimensions and spatial profiles in predefined locations on a substrate. Indeed, our protocol receives a monolithic TMD monolayer (e.g., MoSe 2 ) as the input and delivers lateral heterostructures (e.g., MoSe 2 −MoS 2 ) with fully engineerable morphologies. In addition, through establishing MoS 2x Se 2(1−x) −MoS 2y Se 2(1−y) lateral junctions, our synthesis protocol offers an extra degree of freedom for engineering the band gap energies up to ∼320 meV on each side of the heterostructure junction via changing x and y independently. Our electron microscopy analysis reveals that such continuous tuning stems from the random intermixing of sulfur and selenium atoms following the chalcogen swapping. We believe that, by adding an engineering flavor to the synthesis of TMD heterostructures, our study lowers the barrier for the integration of twodimensional materials into practical optoelectronic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.