All-solution processed, low-temperature zinc oxide nanowire network transistor fabrication on a polymer substrate was demonstrated. This simple process can produce high resolution metal electrode transistors with inorganic semiconductor nanowire active material in a fully maskless sequence, eliminating the need for lithographic and vacuum processes. The temperature throughout the processing was under 140°C, which will enable further applications to electronics on low-cost, large-area flexible polymer substrates.
An experimental investigation of explosive crystallization ͑EC͒ of thin amorphous Ge films deposited on a solid substrate is performed, and a theory of EC front propagation accompanied by melting in a class of films that includes Ge films is developed. The experiments show that the propagation of a planar EC front is possible for a certain range of substrate temperatures and film thicknesses. It is found that for substrate temperatures larger than a certain threshold, the macroscopically planar front leaves behind a columnar microstructure in the crystal. The theory of EC front propagation is based on the experimental observation that the propagating front exhibits a thin layer of Ge melt between the amorphous and crystalline phases. A uniformly propagating planar front solution is determined, whose propagation speed is found as a function of the substrate temperature and the heat loss parameter that, in turn, depends on the film thickness. A linear stability analysis of the uniformly propagating EC front with a melting layer is performed. It is found that in a certain interval of substrate temperatures the EC front undergoes a monotonic morphological instability with a preferred wave number that explains the formation of the columnar structures observed in experiments. We also perform a nonlinear analysis describing the evolution of the morphological instability. The interval of substrate temperatures for which the instability is observed, as well as the wavelength of the columnar structure, are found to be in good agreement with experimental observations.
Hand anthropometry data are largely based on measurements of the hand in an outstretched hand posture and are, therefore, difficult to apply to tool gripping hand postures. The purpose of this project was to develop a representative, scalable hand model to be used with 3-D software drawing packages to aid in the ergonomic design of hand tools. Landmarks (66) on the palmar surface of the right hand of 100 subjects were digitised in four functional hand postures and, from these, 3-D surface models of a mean, 25th and 75th% hand were developed. The root mean square differences in hand length between the hand model and the digitised data for the 25th, 50th and 75th percentile hand were 11.4, 3.2 and 8.9 mm, respectively. The corresponding values for hand breadth were 2.0, 0.4 and 1.4 mm. There was good agreement between distances on the digitised hand and the hand model. The application of this research includes improved ergonomic hand tool design through the use of hand anthropometry reference values developed from the general population using grasping hand postures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.