A review of the oxygen reduction reaction (ORR) and its use in fuel-cell applications is presented. Discussed are mechanisms of the ORR and implementations of catalysts for this reaction. Specific catalysts discussed include nanoparticles, macrocycles and pyrolysis products, carbons, chalcogenides, enzymes, and coordination complexes. A prospectus for future efforts is provided.
Whether or not the active sites for the oxygen reduction reaction (ORR) in electrocatalysts based on carbon-supported transition-metal complexes are metal-centered has become controversial, especially for heat-treated materials. Some have proposed that the transition metal only serves to form highly active sites based on nitrogen and carbon. Here, we examine the oxygen reduction activity of carbon-supported iron(II) phthalocyanine (FePc) before and after pyrolysis at 800 °C and a carbon-supported copper(II) complex with 3,5-diamino-1,2,4-triazole (CuDAT) in the presence of several anions and small-molecule poisons, including fluoride, azide, thiocyanate, ethanethiol, and cyanide. CuDAT is poisoned in a manner consistent with a Cu-based active site. Although FePc and pyrolyzed FePc are remarkably resilient to most poisons, they are poisoned by cyanide, indicative of Fe-based active sites.
Laccase, a multicopper oxidase, catalyses the four electron reduction of oxygen to water. Upon adsorption to an electrode surface, laccase is known to reduce oxygen at overpotentials lower than the best noble metal electrocatalysts usually employed. While the electrocatalytic activity of laccase is well established on carbon electrodes, laccase does not typically adsorb to better defined noble metal surfaces in an orientation that allows for efficient electrocatalysis. In this work, we utilized anthracene-2-methanethiol (AMT) to modify the surface of Au electrodes and examined the electrocatalytic activity of adsorbed laccase. AMT facilitated the adsorption of laccase, and the onset of electrocatalytic oxygen reduction was observed as high as 1.13 VRHE. We observed linear Tafel behavior with a 144 mV/dec slope, consistent with an outer sphere single electron transfer from the electrode to a Cu site in the enzyme as the rate determining step of the oxygen reduction mechanism.
An in situ electrochemical X-ray absorption spectroscopy (XAS) cell has been fabricated that enables high oxygen flux to the working electrode by utilizing a thin poly(dimethylsiloxane) (PDMS) window. This cell design enables in situ XAS investigations of the oxygen reduction reaction (ORR) at high operating current densities greater than 1 mA in an oxygen-purged environment. When the cell was used to study the ORR for a Pt on carbon electrocatalyst, the data revealed a progressive evolution of the electronic structure of the metal clusters that is both potential-dependent and strongly current-dependent. The trends establish a direct correlation to d-state occupancies that directly tracks the character of the Pt-O bonding present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.