Understanding how different crops use water over time is essential for planning and managing water allocation, water rights, and agricultural production. The main objective of this paper is to characterize the spatiotemporal dynamics of crop water use in the Central Valley of California using Landsat-based annual actual evapotranspiration (ETa) from 2008 to 2018 derived from the Operational Simplified Surface Energy Balance (SSEBop) model. Crop water use for 10 crops is characterized at multiple scales. The Mann-Kendall trend analysis revealed a significant increase in area cultivated with almonds and their water use, with an annual rate of change of 16,327 ha in area and 13,488 ha-m in water use. Conversely, alfalfa showed a significant decline with 12,429 ha in area and 13,901 ha-m in water use per year during the same period. A pixel-based Mann-Kendall trend analysis showed the changing crop type and water use at the level of individual fields for all of Kern County in the Central Valley. This study demonstrates the useful application of historical Landsat ET to produce relevant water management information. Similar studies can be conducted at regional and global scales to understand and quantify the relationships between land cover change and its impact on water use.
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to quantify long-term, basin-wide crop consumptive use in a large basin. The rich archive of Landsat imagery combined with the Operational Simplified Surface Energy Balance (SSEBop) model was used to estimate and map ETa across the basin and over irrigated fields for historical characterization of water-use dynamics. Monthly ETa estimates were evaluated using six eddy-covariance (EC) flux towers showing strong correspondence (r2 > 0.80) with reasonable error rates (root mean square error between 6 and 19 mm/month). Detailed spatiotemporal analysis using peak growing season (June–August) ETa over irrigated areas revealed declining regional crop water-use patterns throughout the basin, a trend reinforced through comparisons with gridded ETa from the Max Planck Institute (MPI). The interrelationships among seven agro-hydroclimatic variables (ETa, Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), maximum air temperature (Ta), potential ET (ETo), precipitation, and runoff) are all summarized to support the assessment and context of historical water-use dynamics over 30 years in the URGB.
Actual evapotranspiration modeling is providing useful information for researchers and resource managers in agriculture and water resources around the world. The performance of models depends on the accuracy of forcing inputs and model parameters. We developed an improved approach to the parameterization of the Operational Simplified Surface Energy Balance (SSEBop) model using the Forcing and Normalizing Operation (FANO). SSEBop has two key model parameters that define the model boundary conditions. The FANO algorithm computes the wet-bulb boundary condition using a linear FANO Equation relating surface temperature, surface psychrometric constant, and the Normalized Difference Vegetation Index (NDVI). The FANO parameterization was implemented on two computing platforms using Landsat and gridded meteorological datasets: (1) Google Earth Engine (GEE) and (2) Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA). Evaluation was conducted by comparing modeled actual evapotranspiration (ETa) estimates with AmeriFlux eddy covariance (EC) and water balance ETa from level-8 Hydrologic Unit Code sub-basins in the conterminous United States. FANO brought substantial improvements in model accuracy and operational implementation. Compared to the earlier version (v0.1.7), SSEBop FANO (v0.2.6) reduced grassland bias from 47% to −2% while maintaining comparable bias for croplands (11% versus −7%) against EC data. A water balance-based ETa bias evaluation showed an overall improvement from 7% to −1%. Climatology versus annual gridded reference evapotranspiration (ETr) produced comparable ETa results, justifying the use of climatology ETr for the global SSEBop Landsat ETa that is accessible through the ESPA website. Besides improvements in model accuracy, SSEBop FANO increases the spatiotemporal coverage of ET modeling due to the elimination of high NDVI requirements for model parameterization. Because of the existence of potential biases from forcing inputs and model parameters, continued evaluation and bias corrections are necessary to improve the absolute magnitude of ETa for localized water budget applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.