The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data‐driven irrigation management strategies, and expanding incentive‐driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field‐scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community‐driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well‐established satellite‐based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web‐based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite‐driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT‐JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET.
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to quantify long-term, basin-wide crop consumptive use in a large basin. The rich archive of Landsat imagery combined with the Operational Simplified Surface Energy Balance (SSEBop) model was used to estimate and map ETa across the basin and over irrigated fields for historical characterization of water-use dynamics. Monthly ETa estimates were evaluated using six eddy-covariance (EC) flux towers showing strong correspondence (r2 > 0.80) with reasonable error rates (root mean square error between 6 and 19 mm/month). Detailed spatiotemporal analysis using peak growing season (June–August) ETa over irrigated areas revealed declining regional crop water-use patterns throughout the basin, a trend reinforced through comparisons with gridded ETa from the Max Planck Institute (MPI). The interrelationships among seven agro-hydroclimatic variables (ETa, Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), maximum air temperature (Ta), potential ET (ETo), precipitation, and runoff) are all summarized to support the assessment and context of historical water-use dynamics over 30 years in the URGB.
Actual evapotranspiration modeling is providing useful information for researchers and resource managers in agriculture and water resources around the world. The performance of models depends on the accuracy of forcing inputs and model parameters. We developed an improved approach to the parameterization of the Operational Simplified Surface Energy Balance (SSEBop) model using the Forcing and Normalizing Operation (FANO). SSEBop has two key model parameters that define the model boundary conditions. The FANO algorithm computes the wet-bulb boundary condition using a linear FANO Equation relating surface temperature, surface psychrometric constant, and the Normalized Difference Vegetation Index (NDVI). The FANO parameterization was implemented on two computing platforms using Landsat and gridded meteorological datasets: (1) Google Earth Engine (GEE) and (2) Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA). Evaluation was conducted by comparing modeled actual evapotranspiration (ETa) estimates with AmeriFlux eddy covariance (EC) and water balance ETa from level-8 Hydrologic Unit Code sub-basins in the conterminous United States. FANO brought substantial improvements in model accuracy and operational implementation. Compared to the earlier version (v0.1.7), SSEBop FANO (v0.2.6) reduced grassland bias from 47% to −2% while maintaining comparable bias for croplands (11% versus −7%) against EC data. A water balance-based ETa bias evaluation showed an overall improvement from 7% to −1%. Climatology versus annual gridded reference evapotranspiration (ETr) produced comparable ETa results, justifying the use of climatology ETr for the global SSEBop Landsat ETa that is accessible through the ESPA website. Besides improvements in model accuracy, SSEBop FANO increases the spatiotemporal coverage of ET modeling due to the elimination of high NDVI requirements for model parameterization. Because of the existence of potential biases from forcing inputs and model parameters, continued evaluation and bias corrections are necessary to improve the absolute magnitude of ETa for localized water budget applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.