A generalization of the random geometric graph (RGG) model is proposed by considering a set of points uniformly and independently distributed on a rectangle of unit area instead of on a unit square [0,1](2). The topological properties of the random rectangular graphs (RRGs) generated by this model are then studied as a function of the rectangle sides lengths a and b=1/a, and the radius r used to connect the nodes. When a=1 we recover the RGG, and when a→∞ the very elongated rectangle generated resembles a one-dimensional RGG. We obtain here analytical expressions for the average degree, degree distribution, connectivity, average path length, and clustering coefficient for RRG. These results provide evidence that show that most of these properties depend on the connection radius and the side length of the rectangle, usually in a monotonic way. The clustering coefficient, however, increases when the square is transformed into a slightly elongated rectangle, and after this maximum it decays with the increase of the elongation of the rectangle. We support all our findings by computational simulations that show the goodness of the theoretical models proposed for RRGs.
The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network models that allows for the consideration of spatial properties on disease propagation. In certain real-world scenarios-like in the analysis of a disease propagating through plants-the shape of the plots and fields where the host of the disease is located may play a fundamental role in the propagation dynamics. Here we consider a generalization of the RGG to account for the variation of the shape of the plots or fields where the hosts of a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular graph and we consider a lower bound for the epidemic threshold of a susceptible-infected-susceptible model or a susceptible-infected-recovered model on these networks. Using extensive numerical simulations and based on our analytical results we conclude that (ceteris paribus) the elongation of the plot or field in which the nodes are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence and simulation results about the propagation of diseases on plants in plots or fields of the same area and different shapes.
A random rectangular graph (RRG) is a generalization of the random geometric graph (RGG) in which the nodes are embedded into a rectangle with side lengths aa and b=1/ab=1/a, instead of on a unit square [0,1]2. Two nodes are then connected if and only if they are separated at a Euclidean distance smaller than or equal to a certain threshold radius r. When a=1 the RRG is identical to the RGG. Here we apply the consensus dynamics model to the RRG. Our main result is a lower bound for the time of consensus, i.e., the time at which the network reaches a global consensus state. To prove this result we need first to find an upper bound for the algebraic connectivity of the RRG, i.e., the second smallest eigenvalue of the combinatorial Laplacian of the graph. This bound is based on a tight lower bound found for the graph diameter. Our results prove that as the rectangle in which the nodes are embedded becomes more elongated, the RRG becomes a ’large-world’, i.e., the diameter grows to infinity, and a poorly-connected graph, i.e., the algebraic connectivity decays to zero. The main consequence of these findings is the proof that the time of consensus in RRGs grows to infinity as the rectangle becomes more elongated. In closing, consensus dynamics in RRGs strongly depend on the geometric characteristics of the embedding space, and reaching the consensus state becomes more difficult as the rectangle is more elongated
We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. We found analytically some bounds for the diameter and the algebraic connectivity of these graphs that allow to bound the diffusion time in these networks. We also show that the RRNGs can be used as a suitable model to replace the RFNs in the study of diffusion-like processes. Indeed, the diffusion time in RFNs can be predicted by using structural and dynamical parameters of the RRNGs. Finally, we also explore some potential extensions of our model to include variable fracture apertures, the possibility of long-range hops of the diffusive particles as a way to account for heterogeneities in the medium and possible superdiffusive processes, and the extension of the model to 3-dimensional space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.